
Kei Nishihara, Masaya Nakata

Yokohama National University

Dec. 30th, 2023

Emulation-based Adaptive Differential Evolution: 
Fast and Auto-tunable Approach 

for Moderately Expensive Optimization Problems

Complex & Intelligent Systems



Background

1



Background

⚫ Expensive Optimization Problem (EOP) in real-world

➢ Function Evaluation (FE) is computationally or financially expensive in EOPs.

➢ The number of FE is restricted due to limited budget.

⚫ Classification of EOP
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Non-expensive (Normal) Moderately EOP (M-EOP) EOP

Problem Example

Evaluation Time Ex.

Max. Number of FEs

Automatic Calibration of Watershed 

Models [Makumbura+ 22]

Vehicle Structure 

Optimization [Oyama+ 17]

Main approach Surrogate-assisted EA (SAEA)Evolutionary Algorithm (EA) Not adequately researched

Airport Gate Allocation [Deng+ 22]

(to be explained in detail next)

[Shan+ 10]

2 minutes 20 hoursLess than 1 second

Several thousand Hundreds to a few thousandHundreds of thousands



Research Purpose

⚫ SAEA: Main Approach for EOPs

➢ Usefulness in EOPs 

◼ Surrogates of the objective function are 

constructed using machine learning (ML).

◼ Surrogates identify expected-to-improve 

solutions without FE.

⚫ Need for an approach for M-EOPs
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➢ Limitations in M-EOPs

1. Premature convergence

2. Time-consuming

3. Fixed parameter configuration 

Several 

thousand FEs

Hundreds to 

a few thousand FEs(              ) (          )

ML models are repeatedly construct/used. 

Reducing the runtime is crucial in M-EOPs.

SAEAs have strong exploitation nature.

Advance fine-tuning is hindered in (M-)EOPs 

although tuning configuration is important.

e.g., Expected Improvement (EI) metric [Jones+ 98]

[Sun+ 15]

[Lobo+ 07]

[Briffoteaux 22]

Research

Purpose
Proposing a 1) High-performance, 2) Fast, and 3) Auto-tunable EA for M-EOPs.



Research Approach

⚫ Auto-tunable and Computationally Efficient Adaptive EA

➢ Adaptive EA

◼ Auto-tunable: Parameter configurations are automatically controlled during a run.

◼ Much faster than SAEAs: Adaptive EAs do not use ML techniques.

◼ Slow convergence: Most are not for (M-)EOPs, i.e., hundreds of thousands of FEs.

➢ Idea to boost convergence speed
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Adaptation with Prior Validation

Pre-screen candidate configurations before

use without FE.

Subpopulation-based Adaptation

The effectiveness of configurations are

carefully validated using multiple samples.

Trial-and-error Adaptation

Configurations are updated based on ones

generated good solutions in past generations.

Individual-based Adaptation

The effectiveness of each configuration is

usually validated with only one sample.

Existing Adaptive EAs Proposed Algorithm



Preliminary
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Component

⚫ Differential Evolution (DE)

➢ A population-based 

evolutionary algorithm
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rand/1 𝒗𝑖 = 𝒙𝑟1 + 𝜃𝐹(𝒙𝑟2 − 𝒙𝑟3)
rand/2 𝒗𝑖 = 𝒙𝑟1 + 𝜃𝐹(𝒙𝑟2 − 𝒙𝑟3) + 𝜃𝐹(𝒙𝑟4 − 𝒙𝑟5)
best/1  𝒗𝑖 = 𝒙𝑏𝑒𝑠𝑡 + 𝜃𝐹(𝒙𝑟1 − 𝒙𝑟2)
best/2 𝒗𝑖 = 𝒙𝑏𝑒𝑠𝑡 + 𝜃𝐹(𝒙𝑟1 − 𝒙𝑟2) + 𝜃𝐹(𝒙𝑟3 − 𝒙𝑟4)
current-to-rand/1 𝒗𝑖 = 𝒙𝒊 + 𝜃𝐹(𝒙𝑟1 − 𝒙𝑖) + 𝜃𝐹(𝒙𝑟2 − 𝒙𝑟3)
current-to-best/1 𝒗𝑖 = 𝒙𝒊 + 𝜃𝐹(𝒙𝑏𝑒𝑠𝑡 − 𝒙𝑖) + 𝜃𝐹(𝒙𝑟1 − 𝒙𝑟2)
current-to-pbest/1 𝒗𝑖 = 𝒙𝒊 + 𝜃𝐹(𝒙𝑝𝑏𝑒𝑠𝑡 − 𝒙𝑖) + 𝜃𝐹(𝒙𝑟1 − ෦𝒙𝑟2)

rand-to-best/1 𝒗𝑖 = 𝒙𝒓𝟏 + 𝜃𝐹(𝒙𝑏𝑒𝑠𝑡 − 𝒙𝑟1) + 𝜃𝐹(𝒙𝑟2 − 𝒙𝑟3)

Crossover: generate a trial solution 𝒖𝑖 from 𝒙𝑖 and 𝒗𝑖

Crossover rate 𝜃𝐶𝑅 ∈ [0, 1]

binomial : 𝑢𝑖,𝑗 = ൝
𝑣𝑖,𝑗 , if 𝑟𝑎𝑛𝑑 0,1 ≤ 𝜃𝐶𝑅 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑖,𝑗 , otherwise

exponential : a method like one/two-point crossover in GA

Mutation: generate a mutant solution 𝒗𝑖 for each 𝒙𝑖

Scaling factor 𝜃𝐹 ∈ [0, 1]parameter

strategy

(mutation 

strategy)

parameter

strategy

(crossover 

strategy)

Selection: select next 𝒙𝑖 from current 𝒙𝑖 and 𝒖𝑖

[Storn+ 97]



Related Works

⚫ Adaptive/Surrogate-assisted DE

Indiv.: individual-based adaptation

Each solution 𝒙𝑖 has its own configuration 𝜽𝑖.

Subpop.: subpopulations-based adaptation

Solutions in a subpopulation use same 𝜽.

➢ Many adaptive DEs are Indiv.

◼ Recently, Subpop. begins to gain popularity. 

➢ Some surrogate-assisted DEs incorporate 

adaptive mechanism into SAEAs.

◼ However, they are usually Indiv.

⚫ Position of Proposed Algorithm

Subpop. and for M-EOPs

7
Max. # of FEsProb. Dim.



Proposed Algorithm: EBADE
– Emulation-based Adaptive DE
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Concept

⚫ Emulating the efficient sampling method of SAEAs

➢ Prior Validation: prescreening “expected-to-improve” candidate

➢ Subpopulation-based Adaptation: validating with respect to multiple samples
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Prescreening of ConfigurationPrescreening of Solution

SAEA EBADE

Surrogate
Unevaluated 

solutions

Solution to 

be evaluated

deriving 

the best 

EI metric

𝜽1
′

Pseudo solution 

generation 

𝜽2
′

𝜽3
′

Unused 

configurations

𝜽2
′

Configuration 

to be used

deriving 

the best 

FIR metric

𝒙1
′

𝒙2
′

𝒙3
′ 𝒙2

′
Target

generated 

by 𝜽1
′

by 𝜽2
′by 𝜽3

′

Configuration Worthiness Measuring 

using Multiple Samples

Surrogate Accuracy Measuring 

using Multiple Samples

SurrogateValidation data Accuracy

𝑎𝑐𝑐

ConfigurationSubpopulation label

+1𝜽𝑖
′ +1 : good

−1 : bad



Preliminary

⚫ Parameter configuration candidates to be adapted

➢ Numerical parameters

◼ Scaling Factor: 𝜃𝐹 ∈ [0, 1] ■ Crossover Rate: 𝜃𝐶𝑅 ∈ [0, 1]

➢ Categorical parameters

◼ Mutation Strategy: Right figure 𝜃𝑣 ∈ {1, 2, 3, 4}

• Four strategies are selected to accelerate exploitation.

◼ Crossover Strategy: binomial and exponential (see p.6) 𝜃𝑢 ∈ {1, 2}

⚫ Initialization

➢ Population: Generate 𝑀 subpopulations {𝒫1, 𝒫2, … , 𝒫𝑀}

◼ Each subpopulation is composed of 𝑁 solutions randomly generated in the search space.

➢ Configuration: Generate 𝑀 configuration vectors {𝜽1, 𝜽2, … , 𝜽𝑀} 𝜽 = [𝜃𝐹 , 𝜃𝐶𝑅 , 𝜃𝑣, 𝜃𝑢]

◼ 𝜃𝐹 = 0.5, 𝜃𝐶𝑅 = 0.9, 𝜃𝑣 and 𝜃𝑢 are randomly generated from their definitions.
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best/1

current-to-best/1

rand-to-best/1

current-to-pbest/1

rand/1

current-to-rand/1

rand/2

exploration

exploitation

[Cai+ 13]

Each definition 

is in p.6



Overall Framework

⚫ EBADE

➢ An example with 𝑀 = 3 and 𝐾 = 3, where 𝐾 is the number of candidate 𝜽s.
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Multi-Population

In terms 

of FIR

Ranks in the top

Failing to be ranked

Minimum Euclidean distance 

between the best FIR solution and the solution in the subpopulation

Search Prior ValidationPost-hoc Validation

Good

Bad

FIR: Fitness Improvement Ratio
- FIR is used to find the “expected-

to-improve” solutions.

- 𝛿𝐶 ≥ 0 is a constant value to avoid 

division by 0.

Solution having the best FIR

𝜽𝑐𝑎𝑛𝑑,1
𝜽𝑐𝑎𝑛𝑑,2

𝜽𝑐𝑎𝑛𝑑,3

deriving 

the best 

FIR metric

Target

generated 

by 𝜽𝑐𝑎𝑛𝑑,1

by 𝜽𝑐𝑎𝑛𝑑,3by 𝜽𝑐𝑎𝑛𝑑,2

𝜽𝑐𝑎𝑛𝑑,3



Experiment
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Experiment: Settings

➢ Real-Parameter Single Objective Optimization Problem
◼ CEC 2013 benchmark suite (28 Problems, 𝐷 = 10, 20, 30 , 𝐹𝐸max = {2,000, 4,000, 𝟔, 𝟎𝟎𝟎, 8,000, 10,000})

➢ Compared Algorithms and Their Configurations

◼ SHADE ：𝑁 = 100,𝑀𝐹,ℎ,𝑖𝑛𝑖𝑡 = 𝑀𝐶𝑅,ℎ,𝑖𝑛𝑖𝑡 = 0.5, 𝐹𝑠𝑡𝑑 = 𝐶𝑅𝑠𝑡𝑑 = 0.1,𝐻 = 100, 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 = 100, 𝑝min =
2

𝑁
, 𝑝max = 0.2

◼ jSO ：𝑁𝑖𝑛𝑖𝑡 = 25 log𝐷
3

2 , 𝑁min = 4,𝑀𝐹,ℎ,𝑖𝑛𝑖𝑡 = 0.3,𝑀𝐶𝑅,ℎ,𝑖𝑛𝑖𝑡 = 0.8,𝑀𝐹,𝐻 = 𝑀𝐶𝑅,𝐻 = 0.9, 𝐹𝑠𝑡𝑑 = 𝐶𝑅𝑠𝑡𝑑 = 0.1, 𝑔𝑒𝑛𝐹,𝑠𝑒𝑝 = 0.6, 𝐹𝑠𝑒𝑝 = 0.7, 𝐹𝑓𝑖𝑥 = 0.7, 𝑔𝑒𝑛𝐶𝑅,𝑠𝑒𝑝 =
0.25,0.5 , 𝐶𝑅𝑚𝑎𝑥𝑐𝑎𝑛𝑑 = 0.7,0.6 , 𝑔𝑒𝑛𝑚𝑢𝑡,𝑠𝑒𝑝 = 0.2,0.4 ,𝑤𝑒𝑖𝑔ℎ𝑡𝑚𝑢𝑡 = 0.7,0.8,1.2 ,𝐻 = 5, 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 = 𝑁, 𝑝min = 0.125, 𝑝max = 0.25

◼ CSDE ：𝑁 = 100, 𝐹𝑖𝑛𝑖𝑡 = 0.5, 𝐶𝑅𝑖𝑛𝑖𝑡 = 0.5, 𝐹𝑃 = 200, 𝜇 = 0.5, 𝜎 = 0.1

◼ EDEV ： 𝜆1 = 𝜆2 = 𝜆3 = 0.1, 𝜆4 = 0.7, 𝑛𝑔 = 20

◼ GPEME ：𝑁 = 100, 𝐹 = 0.8, 𝐶𝑅 = 0.8, 𝜏 = 100, 𝜆 = 50, 𝑙 = 4,𝜔 = 2, 𝑟𝑒𝑔𝑟𝐾𝑟𝑖𝑔𝑖𝑛𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑐𝑜𝑟𝑟𝐾𝑟𝑖𝑔𝑖𝑛𝑔 = 𝑔𝑎𝑢𝑠𝑠, 𝜃 ∈ 10−5, 102 , 𝜃𝑖𝑛𝑖𝑡 = 10−2. 𝐷𝑠𝑎𝑚𝑚𝑜𝑛,𝑠𝑒𝑝 = 50

◼ S-JADE ：𝑁 = 100, 𝐹𝑜𝑢𝑡 = 0.5, 𝐶𝑅𝑜𝑢𝑡 = 0.75, 𝑝𝑝𝑏𝑒𝑠𝑡_𝑜𝑢𝑡 = 0.05, 𝐹𝑖𝑛 = 0.5, 𝐶𝑅𝑜𝑢𝑡 = 0.5, 𝑝𝑝𝑏𝑒𝑠𝑡_𝑖𝑛 = 0.1, 𝑠𝑡𝑑𝐹 = 0.1, 𝑠𝑡𝑑𝐶𝑅 = 0.1, 𝐿 = 10, 𝜖 = 0.01, 𝑐 = 0.1, 𝑒𝑣𝑎𝑙𝑠𝑖𝑛 =
2,000, 𝑘𝑒𝑟𝑛𝑒𝑙𝑅𝐵𝐹 = 𝑐𝑢𝑏𝑖𝑐, 𝑟 = 𝑟𝑎𝑛𝑑(0, 1.25)

◼ SAHO ：𝑁 = 100, 𝐹 = 0.5, 𝐶𝑅 = 0.9, 𝐾 = 30, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 = 5𝐷 𝐷 < 50 𝑜𝑟 𝐷 𝐷 ≥ 50 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑅𝐵𝐹 = 𝑐𝑢𝑏𝑖𝑐

◼ ESMDE ：𝑁 = 100, 𝐹 ∈ 0.5,1.0 , 𝐶𝑅 ∈ 0,1 ,𝑚𝑢𝑡 ∈ 𝑟/1 𝑐 − t − r/1 , 𝑥𝑜𝑣 ∈ 𝑏𝑖𝑛, 𝑒𝑥𝑝 , 𝑐 = 10, 𝑟𝑒𝑔𝑟𝐾𝑟𝑖𝑔𝑖𝑛𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑐𝑜𝑟𝑟𝐾𝑟𝑖𝑔𝑖𝑛𝑔 = 𝑔𝑎𝑢𝑠𝑠, 𝜃 ∈ 10−5, 102 , 𝜃𝑖𝑛𝑖𝑡 = 10−2

◼ EBADE ：𝑁 = 4,𝑀 = 25, 𝐾 = 6, 𝑝 = 0.5

➢ Evaluation Metrics
◼ Average over 21 trials of the best fitness value

◼ Wilcoxon signed-rank test

◼ Average rank
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[Pan+ 21]

[Tanabe+ 13]

[Sun+ 20]

[Brest+ 17]

[Liu+ 14]

[Cai+ 19]

[Mallipeddi+ 15]

[Wu+ 18]

Adaptive DEs

Surrogate-assisted DEs

Proposed Algorithms



Experiment: Results (Fitness at 6,000FEs)

⚫ EBADE outperforms adaptive DEs and is highly competitive with SAEAs

➢ EBADE is superior with statistical significance (the number of “-” is 9 to 27)

➢ The best average rank is obtained by EBADE in all dimensions.
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＋/－/～ in Wilcoxon test

＋ ：ours underperforms

－ ：ours outperforms

～ ：cannot find significance

Best value

Worst value

𝐷 = 10 𝐷 = 30



Experiment: Results (Summary)

⚫ Usefulness of EBADE and Limitation of SAEA in M-EOPs

➢ EBADE keeps deriving the best performance after 6,000 FEs, i.e., M-EOPs

➢ The ranks of SAEAs decreases as the increase of the number of FEs.

➢ Some adaptive DEs becomes effective as the increase of the number of FEs.
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Wilcoxon signed-rank test
Average rank

＋/－/～ in Wilcoxon test

＋ ：ours underperforms

－ ：ours outperforms

～ ：cannot find significance

(jSO and CSDE) 



Experiment: Computational Time

⚫ Average runtime [sec] required to complete one trial (6,000 FEs)

➢ The runtime of EBADE is slightly longer than those of adaptive DEs.

◼ However, this is not cared in M-EOPs.

➢ The runtime of EBADE is much faster than those of SAEAs.

◼ These long runtime of SAEAs are not accepted in M-EOPs.
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Adaptive DEs SAEAs



Discussion
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Discussion 1/3 

⚫ Impact of parameter adaptation in M-EOPs

➢ EBADE is compared with DEs with fixed parameter configuration.

◼ Eight variants (𝜃𝐹 = 0.5, 𝜃𝐶𝑅 = 0.9)

◼ Result (average rank)

• EBADE is in top rank 

with 6,000 FEs and more.

• cb/1/b and rb/1/b are in high 

rank under 4,000 FEs.

However, their rank degrades

with a greater number of FEs.
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best/1 rand-to-best/1current-to-pbest/1current-to-best/1

binomial

exponential
crossover

mutation

b/1/b cb/1/b cpb/1/b rb/1/b

b/1/e cb/1/e cpb/1/e rb/1/e

Conclusion The effectiveness of parameter adaptation of EBADE is confirmed.



Discussion 2/3 

⚫ Parameter analysis for 𝐾 (# of candidate 𝜽s) and 𝑀 (# of subpopulations)

➢ Ablation studies of the prior validation and multi-population can also be conducted.

◼ Result

• The performance of EBADE is

sensitive to 𝐾 and 𝑀.

• The default setting outperforms

or is competitive with the others.

• EBADE with 𝐾 = 1 or 𝑀 = 100

clearly underperform the others.

19

Conclusion The prior validation and multi-population mechanisms are necessary.

Can be turned off by setting 𝐾 = 1 Ditto by setting 𝑀 = 100 ＋/－/～ in Wilcoxon test

＋ ：default setting underperforms

－ ：default setting outperforms

～ ：cannot find significance



Discussion 3/3 20

⚫ Adaptation result

➢ The ratio of each candidate used

◼ Shown by problem function and the dimension.

◼ Result

• All candidates for each configuration are selected 

avoiding strong bias.

◼ Analysis example

• 𝐶𝑅 prefers higher values.

✓ Solutions generated by exploitation mutation 

strategies should be actively utilized in EOPs.

• Exploitation-oriented mutation strategy

(best/1) is most frequently selected in EOPs.

Conclusion EBADE exhibited high performance by selecting more candidates appropriate for EOPs.



Conclusion
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Conclusion

⚫ Emulation-based Adaptive DE for M-EOPs

➢ EBADE emulates sample-efficient approaches like SAEAs.

◼ Prior validation mechanism prescreens candidate configurations without FEs.

◼ Multi-population mechanism validates candidate configurations with respect to multiple 

samples.

➢ High performance, Fast, and Auto-tunable

◼ Outperforming adaptive DEs and highly competitive with SAEAs.

◼ Much shorter runtime than those of SAEAs.

◼ Automatic performance improvement and easy-to-use

⚫ Future Work

➢ Extension to multi-objective EOPs

➢ Development of solution screening mechanism without using any ML technique.
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