
Competitive-Adaptive Algorithm-Tuning of
Metaheuristics inspired by the Equilibrium Theory:

A Case Study
Kei Nishihara

Collage of Engineering
Yokohama National University

Yokohama, Japan
nishihara-kei-jv@ynu.jp

Masaya Nakata
Collage of Engineering

Yokohama National University
Yokohama, Japan

nakata-masaya-tb@ynu.ac.jp

This paper proposes a competitive-adaptive algorithm-
tuning framework for metaheuristic algorithms. Our proposed
method, called CAT, is inspired by the Equilibrium Theory in
economics, which explains competitors eventually converge to
an equilibrium status, e.g. in terms of the price of products.
In detail, our proposal runs multiple optimizers with different
algorithmic configurations, e.g. mutation variants. Then, the
configurations of inferior optimizers are adaptively tuned so
that they can derive good solutions that superior ones have
derived. This intends to boost the performance even with a lim-
ited number of fitness evaluations, by the following technical
advantage. The CAT preliminarily validates a search capacity
of tuned algorithmic configurations and then constructs an
ensemble optimizer by utilizing multiple optimizers. As a
case study, this paper applies the CAT to tune the differential
evolution algorithms (DEs). Experimental results show that
our proposal outperforms the standard DE and an alternative
approach i.e. jDE, which adapts hyper-parameters of genetic
operators.

Index Terms—self-adaptation, algorithm tuning, differential
evolution

I. INTRODUCTION

While many successful versions of metaheuristic algorithms
have been proposed, we often face to a practical difficulty: how
we should select algorithmic configurations suitable to specific
optimization problems. In fact, as pointed out in the no-free-
lunch theorem, we can expect that there is a proper optimiza-
tion algorithm for a specific problem. This expectation raises
a challenge to automatically adapt algorithmic configurations
of metaheuristics (or to construct an optimization algorithm,
like hyperheuristics [1]). Considering a practical use of such
an adaptation technique in real world problems, which may be
computationally-expensive problems, a key is how efficiently
adaptation techniques can improve the performance with a
limited number of fitness evaluations.

For this challenge, self-adaptation of algorithm configura-
tions is a promising approach. A main idea is to optimize the
algorithm configurations during exploration so that improving

the search capacity of specific metaheuristics. Thus far, various
self-adaptation techniques have been proposed and succeeded
in improving the performance compared with standard (non-
adaptive) metaheuristics [2]–[4]. A popular approach is to
adaptively tune (or control) hyper-parameter settings of a spe-
cific metaheuristic algorithm, e.g. APSO-VI [5] and SHADE
[6] for a given optimization problem. In addition, algorith-
mic variants, e.g. mutation variants, can also be considered
as options to specify algorithms, such as SaDE [7] and a
grammatical evolution approach [8]–[10].

While those approaches have different technical advantages,
we can suppose that they are based on a common adaptation
strategy, called an experience-based adaptation in this paper.
In detail, the common principle of those approaches is to
inherit a superior algorithmic configuration that succeeded in
producing good solutions. For instance, on the individual-level
adaptation framework, hyper-parameter values are typically
sampled from a defined distribution in which its average is
set to values assigned to a good solution. However, this re-
quires an assumption that configurations similar to its superior
one may produce better solutions. Thus, the quality of a
newly-adjusted configuration is not evaluated with any certain
criterion until a solution produced with its configuration is
evaluated. Consequently, the number of fitness evaluations
may increase in order to improve the performance while
discovering proper algorithmic configurations; but this is not
accepted in computationally-expensive optimization problems.

Accordingly, this paper proposes a self-adaptation technique
with a novel concept, inspired by the Equilibrium Theory
[11] discussed in economics. In brief, the Equilibrium Theory
argues that, under a condition that we temporally stop dy-
namics of the market influenced by e.g. tax rate, competitors
eventually converge to an equilibrium status, e.g. in terms of
prices of products, when they competitively make efforts to
reduce the price. Accordingly, we design our proposed method,
named as a competitive-adaptive algorithm-tuning framework
(or CAT), based on the following concept;
• as the main motivation of our proposed method, we

shift to a quality-based adaptation from the experience-

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

based adaptation. We tune the algorithmic configuration
so that it produces good solutions discovered thus far.
Technically, this intends to identify a good algorithm con-
figuration validated to have a good search capacity before
a solution produced with its configuration is evaluated;

• we integrate a competition framework into the adapta-
tion technique to implement the above framework. We
run multiple metaheuristics with different configurations
as competition, and we compare their performances at
prescribed intervals of generations, i.e. we temporally
stop the dynamics of exploration. Then, inferior algorithm
configurations are updated in order to derive similar solu-
tions discovered by superior configurations. This intends
to construct an ensemble optimizer by utilizing multiple
optimizers.

Besides, we are also motivated to construct a self-adaptation
technique on computationally-expensive optimization prob-
lems since its practical advantage should be more highlighted
in this problem domain. Hence, our CAT framework aims
to boost the performance of metaheuristics even at early
generation, by producing the ensemble optimizer having good
configurations. In this paper, we present a case study to test
our proposed method; we employ the differential evolution
algorithm (DE) [12] and adaptively tune the algorithmic con-
figurations of DE, i.e. mutation variants, crossover variants and
their hyper-parameters (a scaling factor F and a crossover rate
CR). Hence, we run and then adapt multiple DEs with our
CAT framework. Note that our proposed framework is also
different from alternative adaptation techniques of DE, which
are based on the experience-based adaptation, e.g. jDE [13]
and JADE [14] as well as SHADE and SaDE.

This paper is organized as follows. Section II gives a brief
description of the standard DE framework and the mutation
and crossover variants, which will be tuned as configurations
in this paper. In Section III, we explain the detailed mecha-
nism of our CAT framework. Section IV tests our proposed
method on a set of single-objective benchmark functions.
Then, Section V demonstrates an adaptation result obtained
by the experimental results. Finally, Section VI summaries our
contributions and future work. All figures shown in this paper
are best viewed in color.

II. DIFFERENTIAL EVOLUTION

This paper focuses on single-objective minimization prob-
lems; f : RD → R, where D is a problem dimension. This
section gives a brief description of DE and then introduces
both mutation variants and crossover variants as well as their
hyper-parameters, which are treated as configurations to be
tuned in our CAT framework.

The overall framework of DE is described in Algorithm 1.
Firstly, as noted in Initialization, DE generates N solutions
xi (i = 1, 2, · · · , N) and inserts them to a population P at
the initial generation t = 0. In particular, for t = 0, j-th
element xi,j (j = 1, 2, · · · , D) of xi is initialized as;

xi,j = (xmax,j − xmin,j)rand[0, 1) + xmin,j , (1)

Algorithm 1 Differential Evolution
1: t = 0
2: for i = 1 to N do
3: xi ← Initialization
4: Add xi to P
5: while t < tmax do
6: for i = 1 to N do
7: vi ← Generate mutant individual from P
8: ui ← Generate solution via crossover
9: for i = 1 to N do

10: if f(ui) < f(xi) then
11: xi ← ui
12: t = t+ 1

TABLE I
MUTATION VARIANTS

index variant definition
1 rand/1 vi = xr1 + F (xr2 − xr3)
2 rand/2 vi = xr1 + F (xr2 − xr3)

+F (xr4 − xr5)
3 best/1 vi = xbest + F (xr1 − xr2)
4 best/2 vi = xbest + F (xr1 − xr2)

+F (xr3 − xr4)
5 current-to-rand/1 vi = xi + F (xr1 − xi)

+F (xr2 − xr3)
6 current-to-best/1 vi = xi + F (xbest − xi)

+F (xr1 − xr2)
7 current-to-pbest/1 vi = xi + F (xpbest − xi)

+F (xr1 − xr2)

where xmax,j and xmin,j are the upper and lower bounds of
x,j , respectively, and a function rand[0, 1) returns a random
real value between 0 and 1 sampled from the uniform dis-
tribution. Next, DE generates a new solution ui for xi; it
generates a mutant individual vi for xi; and then it further
generates ui by a crossover operator, i.e. replacing elements
of xi with that of vi. Thus far, various mutation and crossover
variants have been proposed. In detail, this paper employs
seven popular mutation variants summarized in TABLE I. All
the variants commonly use the hyper-parameter F . We can
roughly classify the mutation variants as: rand/1, rand/2 and
current-to-rand/1, which heavily depend on randomly-selected
solutions and tend to enhance a pressure of global search; other
variants, i.e. best/1, best/2, current-to-best/1 and current-to-
pbest/1 tend to enhance a pressure of global search but near to
the current-best solution. Since rand/2 and best/2 employ two
additional (randomly-selected) vectors compared with rand/1
and best/1, respectively, these variants may improve a diversity
of solutions. For instance, a rand/1 variant generates vi with
the following equation;

vi = xr1 + F (xr2 − xr3), (2)

where xr1 , xr2 and xr3 are solutions randomly selected from
the current population P; a scaling factor F ∈ [0, 1] is a
hyper-parameter. Then, the crossover operator with a hyper-
parameter CR ∈ [0, 1], i.e. a crossover rate, is applied.
In this paper we employ two popular crossover variants,
i.e. the binomial crossover and the exponential crossover; the
detailed algorithms of these crossover variants are described

Algorithm 2 Binomial Crossover
jrand ← randomly select an index of dimension from [1, D]
for j = 1 to D do

if rand[0, 1) < CR or j == jrand then
ui,j = vi,j

else
ui,j = xi,j

Algorithm 3 Exponential Crossover
j ← randomly select an index of dimension from [1, D]
k = 1
ui ← xi
repeat
ui,j = vi,j
j = (j + 1) mod D
k = k + 1

until rand [0, 1) ≥ CR or k ≥ D

in Algorithms 2 and 3, respectively. Finally, The fitness of ui
is calculated, and xi is replaced with ui if f(ui) < f(xi);
otherwise xi is used for the next generation. Those processes
except for the initialization are repeated until the termination
criterion is met, defined as t < tmax in this paper, where tmax

is the maximum generation.

III. COMPETITIVE-ADAPTIVE ALGORITHM-TUNING

This section describes our conceptual model inspired by
the Equilibrium Theory in economics and then the detailed
mechanism of the CAT.

A. Conceptual model

The Equilibrium Theory explains when competitors eventu-
ally converge to an equilibrium status under an ideal condition.
In detail, as shown in Fig. 1 (top), three competitors A, B and
C seek to maximize their profit by selling products, under
complex dynamics of the market influenced by e.g. tax rate;
they typically make their own efforts (e.g. cost-cutting) to
reduce the price of their products to be competitive to other
competitors, i.e. price competition. The Equilibrium Theory
supposes an ideal condition where we temporally pause the
dynamics of the market, that is, a static market’s environment.
Then, the Equilibrium Theory argues that the competitors
eventually reach an equilibrium status, that is, they derive
almost the same price of their products, if the competitors
intensively make efforts to reduce the price under the ideal
condition. Interestingly, this theory does not suppose that the
competitors take similar strategies to reduce the price but argue
that they eventually derive almost the same price by a pressure
of price-competition in which each competitor can take its own
strategy to reduce the price.

Accordingly, as shown in Fig. 1 (bottom), we design our
proposed model as follows. Firstly, we run multiple optimiza-
tion algorithms (or agents) in parallel as competitors; and each
algorithm is designed to have a different algorithmic configura-
tion from the other optimizers. As usual, each algorithm seeks
to minimize an objective function under dynamics of solution
exploration, like the price of the products. Then, we temporally

Fig. 1. Concept of the competitive-adaptive algorithm-tuning framework.

pause the solution exploration of all the algorithms and com-
pare the current-best solutions derived by all the algorithms.
Superior algorithms, which derived better solutions, are inher-
ited for the restart of solution exploration to further explore
the solution-space. However, for the other inferior algorithms,
their algorithmic configurations are adjusted so that they derive
almost the same solutions derived by the superior algorithms.
Then, the inferior algorithms with adjusted configurations are
used for the restart of the solution exploration.

B. Preliminaries

As a case study, this paper applies our CAT algorithm
to the DE framework; and it tunes the variants of mutation
and crossover strategies as well as their hyper-parameters
during exploration. Thus, we run multiple DEs as competitors.
Different from alternative methods, e.g. jDE, JADE, SHADE
and SaDE, which can be classified as an individual-level tuning
approach, our proposal is an algorithm-level tuning approach;
each DE has its algorithm configuration and then it generates
solutions with the same procedure as in the standard DE
framework.

To specify the algorithm configuration of DE, we define
a configuration vector θ, which will be tuned by our CAT
algorithm. In detail, θ consists of the following four variables;
an index of mutation variant xv = {1, 2, · · · 7}, which is
a categorical value corresponding to the index of mutation
variant noted in TABLE I; a scaling factor xF ∈ [0, 1],
which is a real-value used as F for the xv-th mutation
variant; an index of crossover variant xu = {0, 1}, which is
a binary value and 0 and 1 indicate the binomial crossover
and the exponential crossover, respectively; and a crossover
rate xCR ∈ [0, 1], which is a real-value used as CR in a
determined crossover variant. Note that we set the parameter
p = 1/2 for current-to-pbest/1.

We also define a set of algorithms (i.e. optimizers) A =
{A1, A2, · · ·An}, where n is the number of algorithms. In our

case study, each algorithm Ai is set to a DE optimizer with
a corresponding configuration vector θi = {xiv, xiF , xiu, xiCR},
denoted by Ai ← DE(θi). Each algorithm Ai i.e. DE(θi) runs
Algorithm 1 with an algorithmic configuration specified by θi.
Here, we define that xij ∈ Pi is a j-th solution generated by i-
th algorithm Ai and belongs to a population Pi of Ai. Hence,
as in the standard DE, each DE(θi) has its own population
Pi, which consists of N solutions.

Note that the configuration vector can be extended de-
pendent on metaheuristic algorithms; and thus CAT should
be also applicable to different metaheuristics. Note also that
as explained in the next subsection, each algorithm Ai can
employ a different optimizer from other algorithms (forming
an ensemble optimizer with heterogeneous optimizers), since
each algorithm is tuned independently of the other algorithms;
however, this paper leaves those possible extensions as future
work.

C. Mechanism

Our CAT framework consists of the following four com-
ponents; 1) Initialization, which sets an initial algorithmic
configuration for each algorithm Ai, 2) Validation, which runs
multiple algorithms and obtains their optimization results, 3)
Competition, which identifies superior/inferior algorithms by
comparing the obtained optimization results and 4) Tuning,
which tunes algorithmic configurations of inferior algorithms
so that they produce better solutions discovered by superior
algorithms.

1) Initialization: CAT starts with an initialization process
of A. For each algorithm Ai, its configuration vector θi is
initialized as follows. For xiF and xiCR, those values are
commonly set as xiF = 0.5 and xiCR = 0.9, which are
the initial values of jDE. However, for xiv, x

i
u, to improve

the diversity of the configurations, a pair of mutation and
crossover variants, i.e. {xiv, xiu} is set to a different pair for
each algorithm. After the initialization of A is conducted, N
initial solutions of each algorithms are generated with the same
procedure as in the standard DE.

2) Validation: This component runs n algorithms to explore
the solution space as usual and to identify superior/inferior
algorithms in the next component. Each algorithm Ai is inde-
pendently executed by evolving solutions in Pi; the maximum
generations of one validation is defined by a hyper-parameter
I named a validation-interval. Then, CAT collects the final
optimization results of all the n algorithms, i.e. population Pi
at the I-th generation. Thus, to complete validations for all the
n algorithms, CAT takes N × I ×n fitness evaluations. How-
ever, this validation process is corresponding to the solution
exploration in the standard DE; and thus the fitness evaluations
are used only to discover better solutions.

3) Competition: This component aims to identify supe-
rior/inferior algorithms by comparing of the optimization
results. Firstly, CAT combines all the n populations Pi (i =
1, 2, · · · , n) into a whole population denoted by P . Thus, P
includes N × n solutions. Then, CAT sorts solutions of P
in ascending order (for minimization problems); and then it

identifies top K solutions, i.e. x∗1,x
∗
2, · · · ,x∗K , where K (0 ≤

K ≤ n) is a hyper-parameter defined in CAT. From those top
K solutions, we identify superior/inferior algorithms. In detail,
we define that an algorithm Ai is an inferior algorithm if any
solution xij ∈ Pi is not involved in a set of top K solutions;
otherwise, i.e. if at least one solution xij is involved in the set
of top K solutions, Ai is a superior algorithm. Let A′ and A∗
be a set of inferior algorithms and a set of superior algorithms,
respectively. Then, we can define A∗ and A′ as;

A′ = {Ai ∈ A | x∗k /∈ P i ∀k = 1, 2, · · · ,K}, (3)

A∗ = {Ai ∈ A | Ai /∈ A′}. (4)

The superior algorithms in A∗ (without any modification
of θi) are re-used for the next validation process in order to
further explore the search space, as they have good algorithmic
configurations at the current generation. However, the inferior
algorithms in A′ will be updated in the next Tuning compo-
nent. Note that if a superior algorithm A∗ has generated more
than one solution involved in the set of top K solutions, we
allow CAT to duplicate and then add A∗s to A∗ in order to
promote A∗’s exploration by increasing its population size.
Thus, the sizes of A′ and A∗ are always |A′| = n −K and
|A∗| = K, respectively.

In addition, we update the algorithm set A for the next
validation. Firstly, we set A to an empty set. Then, each
superior algorithm A∗ ∈ A∗ with its population produced at
the last validation is added to A. Note that, A∗ generates N
new solutions, which are evaluated for the beginning of next
validation; and then we add A∗ to A. Hence, the superior
algorithms continue to explore the search space without any
modification of their algorithmic configurations. The inferior
algorithms will be added to A after the Tuning component is
conducted (see the next subsubsection).

4) Tuning: We tune the configuration vector θi of A′ ∈ A′,
as the main component of CAT. A basic idea of our algorithm-
tuning is to improve a diversity of algorithms in terms of
their search capacity. This idea intends to employ a divide-
and-conquer strategy. In detail, considering that one of the
advantages of CAT is to construct an ensemble optimizer with
multiple optimizers, each algorithm will be tuned to have a
search capacity that explores a specific region of the solution
space.

Technically, we here assume that top n solutions in P ,
i.e. x∗1, x∗2, · · · , x∗K , x∗K+1, · · · , x∗n are representative
solutions existed in specific regions of the solution space;
and each of those specific regions, i.e. a subspace around
each representative solution, is worth to be further explored.
However, we can consider that CAT has already produced
algorithms having the search capacities that explores around
the top K solutions (0 ≤ K ≤ n), i.e. the superior algorithms
A∗. Thus, in this Tuning component, CAT tunes the inferior
algorithms with the rest of top n solutions x∗K+1, · · · , x∗n.

In detail, for A′ i ∈ A′ (i = 1, 2, · · · , n−K), A′ i is tuned
so that it derives a solution existed near to a representative
solution x∗K+i. For instance, A′ 1 will be tuned with K + 1-
th solution i.e. x∗K+1. Next, as described in Algorithm 4, for

Algorithm 4 Algorithm Tuning()
1: while |Piεd | < θN do
2: θi ← set random values of xiv, x

i
F , x

i
u, and xiCR

3: for j = 1 to N do
4: vij ← Mutation(xiv, xiF , P)
5: uij ← Crossover(xiu, xiCR)
6: Add uij to Pi
7: Piεd ← {u

i
j ∈ Pi| ||uij − x∗K+i|| < εd}

8: return DE(θi), Pi

the inferior algorithm A′ i, CAT initializes its configuration
vector θi of A′ i; each variables, i.e. xiv, x

i
F , x

i
u and xiCR

are randomly selected. Then, CAT generates N solutions
uij (j = 1, 2, · · · , N) with the whole population P; as in
DE, it generates a mutant individual vij with a mutation variant
(decided by xv and xF) based on selected individuals from P ,
e.g. xr1 , xr2 and xr3 for the rand/1 variant; then it generates
a new solution uij with a crossover variant decided by xu and
xCR. Each solution uij is added to a population Pi of A′ i.
Next, Pi is used to validate whether A′ i with a tuned θi can
have a proven search capacity to explore a subspace around
x∗K+i. In detail, CAT counts the number of uij near x∗K+i.
Technically, it builds a subset of Pi, denoted by Piεd , which
consists of those solutions uij , given by;

Piεd = {uij ∈ Pi| ||uij − x∗K+i|| < εd}, (5)

where a hyper-parameter εd ∈ R controls a tolerance of gap
between uij and x∗K+i. Then, we define that A′ i with the tuned
θi can have a proven search capacity to explore a subspace
around x∗K+i, if the size of Piεd , i.e. |Piεd | is greater than a
hyper-parameter θN ∈ N0 (0 ≤ θN ≤ N); otherwise CAT re-
initializes θi and generates Pi until Pi satisfies the condition
|Piεd | > θN . After the tuning for each A′ i ∈ A′ is completed,
we employ θi with Pi as an initial population for the next
validation; N solutions in Pi will be evaluated at the beginning
of the next validation. Then, we set A′ i ← DE(θi) and add A′ i

with Pi to A. Finally, CAT re-conducts the Validation process
with the update algorithm set. Note that this Tuning process
is called every N × n× I +N × n fitness evaluations; N ×
n × I fitness evaluations to complete the Validation process;
and N ×n ones at the beginning of the validation to evaluate
N × n initial solutions.

D. Summary

The CAT framework aims to tune the algorithmic configura-
tions in terms of their search capacities, rather than inheriting
previously-good configurations. Hence, without additional fit-
ness evaluations, CAT identifies good configurations defied as
having proven search capacities to produce solutions similar
to good solutions discovered. Thus, we do not argue how
configurations are set or inherited from previous configurations
but CAT focuses on the quality of tuned configurations.

In addition, CAT requires the following five hyper-
parameters; 1) the number of algorithms n, which controls the
parallel number of algorithms to be executed and tuned; 2) the
validation-interval I , which defines the maximum number of

generations to validate tuned algorithms while exploring the
search space; 3) the number of superior algorithms K, which
defines how many algorithms are inherited to the next valida-
tion, 4) a threshold θN and 5) a tolerance εd, which control the
quality of algorithm tuning in terms of the algorithm-level and
the individual-level, respectively. Those additional parameters
may be a drawback if we tune a single metaheuristic algorithm;
in this case study, CAT can adaptively tune the four hyper-
parameters of DEs but requires the five hyper-parameters of
CAT. In fact, this drawback will be relaxed when we tune
various types of metaheuristic algorithms together, as the
number of hyper-parameters can increase in proportion to
the number of type of metaheuristics; however we leave this
extension as future work.

IV. EXPERIMENT

This section tests our CAT framework on single-objective
benchmark problems with different problem dimensions.

A. Experimental design

As summarized in TABLE II, we use eight single-objective
benchmark functions [13], [15]. For each benchmark function,
we set the problem dimension D = {10, 20, 30} and thus
we here test our proposal on the 24 experimental cases. We
add the CAT framework to multiple DEs, simply denoted by
ours and compare our proposal with the standard DE and
jDE as an alternative approach; jDE employs an individual-
level adaptation strategy and it tunes the hyper-parameters
F and CR of each individual during exploration. Note that
our comparison with the three versions is minimally designed
but enough to investigate the impact of our proposal, i.e. the
competition framework with the quality-based adaptation strat-
egy. We set the hyper-parameter settings of DE and jDE as;
N = 100, F = 0.5, CR = 0.9, the rand/1 variant and
the binomial crossover are employed, where F = 0.5 and
CR = 0.9 are used as their initial values in jDE. For both
two versions, we set the maximum number of generations
tmax = 1, 000 and thus the maximum fitness evaluations is
100, 000. For our proposal, we set N = 10, n = 10, K = 3,
I = 5, θN = 5, εd = (xmax − xmin) × 0.1 (see TABLE II).
Note that we change values of εd dependent on the solution
space of each benchmark function. Hence, in our Validation
process, each DE runs for 5 generations, i.e. 50 fitness eval-
uations. Consequently, CAT requires 500 fitness evaluations
to complete the validations of all 10 algorithms; and thus
CAT executes algorithm-tuning, i.e. the Tuning component for
every 600 fitness evaluations; additonal 100 evaluations are
reqired for the initial solutions. We forcedly terminate our
algorithm when the total number of fitness evaluations reaches
100, 000. Hence, all the three versions can be compared with
the same fitness evaluations. The performance of each version
will be evaluated as the best fitness discovered and reported
as the median value of 30 trials. We report the performances
measured at 1,200-th, 3,000-th, 30,000-th, and 100,000-th
fitness evaluations, since we are motivated to investigate how
the CAT algorithm improve the performance of alternative

TABLE II
A SUMMARY OF BENCHMARK FUNCTIONS EMPLOYED IN THIS PAPER

Function Name [xmin, xmax]D Definition

F1 Sphere [−100, 100]D F1(x) =
∑D
i=1 x

2
i

F2 Rosenbrock [−50, 50]D F2(x) =
∑D−1
i=1

(
100

(
x2i − xi+1

)2
+ (xi − 1)2

)
F3 Ackley [−50, 50]D F3(x) = −20 exp(−0.2

√
1
D

∑D
i=1 x

2
i)− exp

(
1
D

∑D
i=1 cos (2πxi)

)
+ 20 + e

F4 Rastrgin [−50, 50]D F4(x) =
∑D
i=1

(
x2i − 10 cos (2πxi) + 10

)
F5 Griewank [−100, 100]D F5(x) = 1 + 1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
F6 Weierstrass [−0.5, 0.5]D

F6(x) =

D∑
i=1

kmax∑
k=0

[
ak cos

(
2πbk (xi + 0.5)

)]−D kmax∑
k=0

[
ak cos

(
2πbk · 0.5

)]
,

a = 0.5, b = 3, kmax = 20

F7 Schwefel [−500, 500]D F7(x) = 418.9829×D −
∑D
i=1 xi sin(

√
|xi|)

F8 Schwefel 1.2 [−100, 100]D F8(x) =
∑D
i=1

(∑i
j=1 xj

)2

approaches under a limited number of fitness evaluations, as
noted in Section I; previous works, e.g. [13], [16] set more than
100,000 fitness evaluations. In addition, to find the significant
difference, we apply the multiple-test for overall results of the
24 experimental cases for each fitness evaluation; we use the
Friedman test and then we continue to apply the Holm method
with the Wilcoxon Signed rank test as a post-hoc test if we
find the significant difference from results of the Friedman
test. A boundary of the significant probability is set to 0.05 in
this paper.

B. Result

TABLE III summarizes the performances of DE, jDE and
our proposal. For the results at 1,200-th fitness evaluation, we
find the significant differences for all possible pairs of versions
except for the pair of DE and jDE (p < 0.05) and their average
ranks are 2.38 for DE, 2.31 for jDE and 1.31 for our proposal,
respectively. For 3,000-th fitness evaluation, we also obtained
a statistical result similar to this result, as well as results
of 30,000-th fitness evaluation1. Thus, we can statistically
confirm that our proposal is a powerful optimizer compared
with DE and jDE on our experimental cases. This empirically
validates that our CAT framework succeeds in improving
the performance with a limited number of fitness evaluations
since CAT identifies good algorithmic configurations without
additional fitness evaluations. In addition, a complexity of
algorithm-tuning in CAT should be increasing more than jDE,
since CAT tunes mutation and crossover variants as well as
their hyper-parameters. However, as our proposal succeeds in
deriving the best performances on 21 experimental cases (see
TABLE III), we can suppose our CAT may be well-scalable
for the increase of the algorithmic configurations; but, this
insight should be further investigated in future work.

However, for 100,000-th fitness evaluation, we cannot find
any significant difference (p > 0.05) while the average ranks
are 2.33 for DE, 1.92 for jDE and 1.75 for our proposal,

1There are significant differences for all possible pairs of versions (p <
0.05) and their average ranks are 2.60 for DE, 2.04 for jDE and 1.35 for our
proposal, respectively.

respectively. Hence, while our proposal is still competitive to
DE and jDE, we can suppose the performance of our proposal
gradually degrades with the increase of fitness evaluations,
which may be a drawback of the divide-and-conquer strategy
employed in this paper; each algorithm is tuned to explore a
specific region but this design may fall to a local solution.
This supposition is further investigated in Section V.

In summary, the experimental result empirically confirmed
our hypothesis that a quality-based adaptation strategy boosts
the performance as compared with the experience-based adap-
tation strategy in this paper. However, a main drawback of
our CAT framework is the increase of the computational
cost. The CAT framework approximately requires fourfold
computational times of jDE due to the time-consuming Tuning
component. Hence, the current CAT framework may be suit-
able for computationally-expensive optimization problems, as
it outperforms DE and jDE by reducing fitness evaluations,
i.e. 1,200 and 3,000.

V. ANALYSIS

We conduct an empirical analysis to investigate how the
algorithm-tuning affects the performance of our proposal. In
detail, we here show examples of algorithm-tunings obtained
by CAT. Fig. 2 shows an example of our tuning results of
xv , xF , xu and xCR for 20,000 fitness evaluations; figures
a)-d) are sampled from one trial of the experimental result
of F1 with D = 10. Note that xv and xu are reported with
stacked curves; each curve indicates the number of algorithms
that employ a corresponding mutation (or crossover) variant.
Note also that our proposal derived the best performance
as compared with DE and jDE on F1 with D = 10 (see
TABLE III).

From the figure, we can firstly identify that CAT intensively
executed the algorithm-tuning till 4,200 fitness evaluations,
like training of algorithms; after 4,200 fitness evaluations, the
algorithmic configurations of all algorithms (A1, A2, · · · , A10)
are not changed even when the Tuning component are con-
ducted. This suggests that CAT completed to tune all of the
algorithm configurations since each corresponding algorithm
has a search capacity to produce a target solution x∗K+i. Note

TABLE III
COMPARISON OF THE BEST FITNESS DISCOVERED AT 1,200-TH, 3,000-TH, 30,000-TH AND 100,000-TH FITNESS EVALUATIONS, RESPECTIVELY. THE

MEDIAN VALUE OF ALL THE 30 TRIALS ARE REPORTED.

1,200-th 3,000-th 30,000-th 100,000-th
id D DE jDE ours DE jDE ours DE jDE ours DE jDE ours

10 4.32E+03 3.53E+03 1.96E+03 7.26E+02 5.83E+02 2.77E+02 1.05E+00 6.91E-01 4.52E-04 1.02E-36 8.66E-39 1.41E-84
F1 20 2.00E+04 2.03E+04 1.09E+04 9.86E+03 8.16E+03 3.96E+03 5.50E+02 2.20E+02 2.85E+00 3.53E-14 4.14E-18 4.24E-40

30 4.08E+04 4.29E+04 2.46E+04 2.30E+04 2.22E+04 1.03E+04 3.31E+03 1.95E+03 1.75E+02 6.17E-08 5.75E-11 2.92E-19
10 1.74E+07 1.52E+07 4.35E+06 5.99E+05 4.47E+05 8.32E+04 1.76E+02 3.19E+02 9.24E+00 1.14E-11 6.25E-03 9.51E-18

F2 20 2.78E+08 2.98E+08 1.08E+08 7.65E+07 6.37E+07 1.32E+07 3.52E+05 1.62E+05 8.48E+02 7.58E+00 1.15E+01 3.15E+00
30 9.84E+08 9.54E+08 2.94E+08 3.22E+08 2.88E+08 5.63E+07 1.09E+07 6.10E+06 5.00E+04 2.33E+01 2.42E+01 2.09E+01
10 2.01E+01 2.01E+01 1.93E+01 1.99E+01 2.00E+01 1.63E+01 1.87E+01 1.99E+01 3.08E-01 4.49E-14 1.11E-14 4.00E-15

F3 20 2.04E+01 2.04E+01 2.04E+01 2.01E+01 2.01E+01 2.01E+01 1.99E+01 2.00E+01 2.00E+01 1.96E+01 1.99E+01 2.00E+01
30 2.06E+01 2.05E+01 2.05E+01 2.02E+01 2.03E+01 2.02E+01 2.00E+01 2.00E+01 2.00E+01 1.99E+01 2.00E+01 2.00E+01
10 1.04E+03 1.01E+03 5.85E+02 2.90E+02 2.56E+02 1.65E+02 5.13E+01 3.24E+01 2.73E+01 1.93E+01 0.00E+00 6.20E-01

F4 20 5.13E+03 5.27E+03 3.27E+03 2.56E+03 2.12E+03 1.22E+03 3.11E+02 2.28E+02 1.47E+02 9.68E+01 1.76E+01 1.64E+01
30 1.10E+04 1.08E+04 6.24E+03 6.77E+03 5.74E+03 2.70E+03 1.09E+03 7.63E+02 3.37E+02 1.86E+02 6.14E+01 4.57E+01
10 1.91E+00 1.90E+00 1.48E+00 1.18E+00 1.12E+00 1.07E+00 5.71E-01 4.07E-01 3.99E-01 2.38E-01 1.41E-13 2.83E-02

F5 20 6.03E+00 6.10E+00 3.75E+00 3.30E+00 2.94E+00 1.84E+00 1.14E+00 1.06E+00 3.49E-01 2.46E-14 0.00E+00 1.97E-02
30 1.12E+01 1.17E+01 7.15E+00 6.75E+00 6.56E+00 3.57E+00 1.78E+00 1.49E+00 1.04E+00 5.01E-09 4.36E-12 7.40E-03
10 1.05E+01 1.01E+01 8.91E+00 6.99E+00 5.69E+00 5.70E+00 1.54E+00 5.65E-01 1.51E-01 0.00E+00 0.00E+00 0.00E+00

F6 20 2.66E+01 2.66E+01 2.32E+01 2.23E+01 2.01E+01 1.85E+01 1.27E+01 6.76E+00 4.20E+00 1.27E-03 3.27E-10 2.52E-01
30 4.34E+01 4.48E+01 3.87E+01 3.87E+01 3.64E+01 3.22E+01 2.66E+01 1.85E+01 1.19E+01 6.41E-02 4.40E-04 9.08E-01
10 2.27E+03 2.12E+03 2.39E+03 2.07E+03 1.71E+03 1.97E+03 1.72E+03 9.83E+02 1.19E+03 1.17E-01 1.27E-04 1.27E-04

F7 20 5.55E+03 5.40E+03 5.71E+03 5.23E+03 4.82E+03 5.34E+03 4.91E+03 3.71E+03 4.26E+03 3.66E+03 2.15E-02 4.83E+02
30 9.12E+03 8.96E+03 9.33E+03 8.81E+03 8.17E+03 8.95E+03 8.21E+03 6.82E+03 7.58E+03 6.86E+03 2.85E+03 3.06E+03
10 5.14E+03 6.39E+03 3.70E+03 1.73E+03 2.96E+03 1.80E+03 4.72E+01 8.90E+02 4.74E+01 2.97E-19 1.92E-04 1.14E-19

F8 20 6.56E+04 7.10E+04 5.94E+04 3.76E+04 4.58E+04 3.19E+04 1.36E+04 2.84E+04 6.24E+03 8.95E+00 6.01E+02 2.00E+01
30 3.86E+05 3.94E+05 2.58E+05 2.20E+05 2.57E+05 1.76E+05 9.38E+04 1.46E+05 4.35E+04 2.68E+03 7.51E+03 1.86E+03

that as shown in Fig. 3, we obtained different tendencies
from Fig. 2; the configurations are more frequently tuned
on F7 and F8 with D = 10 as difficult problems than F1.
Thus, after 4,200 fitness evaluations, we can suppose that CAT
succeeded in discovering the algorithm configurations that
continuously track a specific region around the corresponding
target solution. However, this tendency would strongly depend
on εd. In detail, since DE tends to intensively explore a
specific region of the solution space with the improvement
of the fitness score, the top n solutions may exist near to each
other. Consequently, CAT may produce algorithms that explore
similar specific regions for each other and thus CAT may fall
to a local solution. While this paper sets εd to a fixed value,
it may be suitable to adaptively tune a value of εd depending
on the diversity of the top n solutions.

For a reasonability of the tuning results, while it is difficult
to identify the best configuration on F1 as well as other
functions, we can roughly provide the following insight. Since
F1 is a globally-unimodal function, we can expect that an
adequate strategy is to generate solutions by inheriting the
best solutions. From Fig. 2 a) and b), we can identify that CAT
eventually employs mutation variants using the best solution
with lower values of F (F ≤ 0.5), i.e. best/1, best/2 current-
to-best/1 and current-to-pbest/1. This tends to produce mutant
individuals v near to the best solution. Besides, as reported
in Fig. 2 c) and d), many algorithms employ the binomial
crossover with high value of CR. Accordingly, those are
designed to generate solutions u by inheriting the mutant
individuals using the best solution since the binomial crossover
with high value of CR tends to frequently replace elements
of u with that of v.

VI. CONCLUSION

In this paper, we proposed a competitive-adaptive algorithm-
tuning framework, called CAT. Inspired by the Equilibrium
Theory in economics, we tune an algorithmic configuration
of a metaheuristic so that it produces solutions similar to the
current-best solutions. Thus, CAT adaptively tunes the con-
figurations while validating a search capacity (i.e. quality) of
its configurations. With this framework, we intended to boost
the performance with a limited number of fitness evaluations
by the following technical advantages. Firstly, CAT can iden-
tify good algorithmic configurations without additional fitness
evaluations. Secondly, like a divide-and-conquer strategy and
an ensemble optimizer, CAT tunes multiple algorithms so
that each algorithm explores a specific region of the solution
space. Accordingly, as a case study, this paper used CAT to
tune the differential evolution algorithm. The experimental
result statistically confirmed that DE with CAT successfully
outperforms the standard DE and jDE especially for the limited
number of fitness evaluations, i.e. 1,200 and 3,000.

As our future work, we should further investigate how
hyper-parameters of CAT affect the performance. Since our
analysis revealed that the frequency of algorithm-tuning pro-
cess degrades with the increase of fitness evaluations due to
a fixed value of tolerance εd, we should further study the
setting methodology for εd, e.g. an adaptive tuning dependent
on a diversity of the solutions. Furthermore, in the CAT
framework, each algorithm can be set to a different type
of metaheuristics from other algorithms, e.g. PSO, we can
also extend the CAT framework to construct a self-adaptive
ensemble (heterogeneous) optimizer.

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

Fitness evaluation (×100)

N
u
m
b
er

o
f
a
lg
or
it
h
m
s

rand/1 rand/2 best/1 best/2

c-rand/1 c-best/1 c-pbest/1

a) Mutation variants xv

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

Fitness evaluation (×100)

S
ca
li
n
g
fa
ct
or

F

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

b) Scaling factor xF

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

Fitness evaluation (×100)

N
u
m
b
er

o
f
a
lg
or
it
h
m
s

Binomial Exponential

c) Crossover variants xu

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

Fitness evaluation (×100)

C
ro
ss
ov
er

ra
te

C
R

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

d) Crossover rate xCR
Fig. 2. Examples of algorithm-tuning obtained by CAT on the F1 with D = 10. The figures a)-d) report the tuning results of xv , xF , xu and xCR, which
are sampled from one trial, respectively. Note that xv and xu are reported with stacked curves; each curve indicates the number of algorithms that employ a
corresponding mutation (or crossover) variant.

0 50 100 150 200 250 300 350

0

2

4

6

8

10

Fitness evaluation (×100)

N
u
m
b
er

of
al
go
ri
th
m
s

rand/1 rand/2 best/1 best/2

c-rand/1 c-best/1 c-pbest/1

a) F7 with D = 10

0 100 200 300 400 500 600 700 800 900 1,000

0

2

4

6

8

10

Fitness evaluation (×100)

N
u
m
b
er

of
al
go
ri
th
m
s

rand/1 rand/2 best/1 best/2

c-rand/1 c-best/1 c-pbest/1

b) F8 with D = 10

Fig. 3. Examples of algorithm-tuning of mutation variants obtained by CAT on the F7 and F8 with D = 10.

REFERENCES

[1] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R.
Woodward, “A classification of hyper-heuristic approaches: Revisited,”
in Handbook of Metaheuristics. Springer, 2019, pp. 453–477.

[2] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on evolutionary computa-
tion, vol. 3, no. 2, pp. 124–141, 1999.

[3] F. Lobo, C. F. Lima, and Z. Michalewicz, Parameter setting in evolu-
tionary algorithms. Springer Science & Business Media, 2007, vol. 54.

[4] G. Karafotias, M. Hoogendoorn, and Á. E. Eiben, “Parameter control in
evolutionary algorithms: Trends and challenges,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 2, pp. 167–187, 2014.

[5] G. Xu, “An adaptive parameter tuning of particle swarm optimization
algorithm,” App. Math. Comp., vol. 219, no. 9, pp. 4560–4569, 2013.

[6] R. Tanabe and A. Fukunaga, “Success-history based parameter adapta-
tion for differential evolution,” in CEC2013. IEEE, 2013, pp. 71–78.

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. on Evolutionary Comp., vol. 13, no. 2, pp. 398–417, 2008.

[8] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349–358, 2001.

[9] P. B. Miranda and R. B. Prudêncio, “A novel context-free grammar for
the generation of pso algorithms,” Natural Computing, pp. 1–19, 2018.

[10] A. Bogdanova, J. Pereira Junior, and C. Aranha, “Franken-swarm:
grammatical evolution for the automatic generation of swarm-like meta-
heuristics,” in Genetic and Evo. Comp. Conf. Comp.. pp. 411–412,2019.

[11] L. Walras, Elements of pure economics. Routledge, 2013.
[12] R. Storn and K. Price, “Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE transactions on evo-
lutionary computation, vol. 10, no. 6, pp. 646–657, 2006.

[14] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution
with optional external archive,” IEEE Transactions on evolutionary
computation, vol. 13, no. 5, pp. 945–958, 2009.

[15] B. Da, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, Z. Zhu, C.-K. Ting,
K. Tang, and X. Yao, “Evolutionary multitasking for single-objective
continuous optimization: Benchmark problems, performance metric, and
baseline results,” arXiv preprint arXiv:1706.03470, 2017.

[16] X. Li and M. Yin, “Modified differential evolution with self-adaptive
parameters method,” J. Com. Opt., vol. 31, no. 2, pp. 546–576, 2016.

