自己適応型差分進化法は,アルゴリズム構成を試行錯誤的に調整するため,少ない解評価回数では性能が十分に改善しない.本論文は,調整されたアルゴリズム構成の事前検証によって,試行錯誤的な調整を削減し,少ない解評価回数で高い性能を実現することを目的とする.また,提案する事前検証フレームワークは高い手法的汎用性があり,スケール係数,交叉率,突然変異・交叉戦略を個体ごとに調整する自己適応型差分進化法に適用できる.ベンチマーク問題を用いた実験では,代表手法であるjDE とSaDEにそれぞれ提案手法を適用した結果,通常よりも少ない数千オーダの解評価回数において,その性能が改善することを示す.これは,自己適応型差分進化法が不得意とする高計算コストな問題において,提案手法がこれに展開できる汎用的な方法論となり得ることを示すものである.