Utilizing the Expected Gradient in Surrogate-assisted Evolutionary Algorithms

Proposal: expected gradient-based SAEA

Kei NISHIHARA, Masaya NAKATA Yokohama National University, Japan

Surrogate-assisted Evolutionary Algorithm (SAEA)

- SAEAs are an effective approach to addressing expensive optimization problems (EOPs)
- Function evaluations (FEs) in EOPs are computationally or financially expensive
- SAEAs estimate a promising solution among candidates by assessing their quality with surrogates
- Surrogates usually approximate the objective functions

Gaussian Process (GP), Radial Basis Function Network (RBFN), etc. ...

• Modern SAEAs alternates global and local search phases

- Many SAEAs set a small number of generations *w* [Cai+ 19] Possible reasons
- to reduce the runtime ٠

Gaussian correlation

Correlation vector

for x and each in the dataset

Correlation function matrix K (size: $n \times n$)

to prevent solutions from being guided to the wrong region

How to sufficiently optimize the approximate objective function?

whose elements $k_{ij}(x_i, x_j) = \prod_{d=1}^n k_{ij,d}(x_{i,d}, x_{j,d})$

 k_x (size: $n \times 1$)

 $k_{ij,d}(x_{i,d}, x_{j,d}) = \exp(-\theta_d ||x_{i,d} - x_{j,d}||^2$

Results

4/13/11

F10

F12

F13

F14 F15 F16

F18 F19

F21 F22

F24 F25

F26

F27 F28

6/9/13

5/12/11

Expected Gradient in GP

$$\begin{array}{ll} \text{Objective function} \quad f: \mathbb{R}^D \to \mathbb{R} \\ \text{Dataset} \quad \{(x_i, f(x_i))\}_{i=1}^n \quad (x_i \in \mathbb{R}^D) \\ \text{The approximation of } f(x) \quad \hat{f}(x) = \mu + k_x^{\mathsf{T}} K^{-1} (f-1\mu), \\ \mu = \frac{\mathbf{1}^{\mathsf{T}} K^{-1} f}{\mathbf{1}^{\mathsf{T}} K^{-1} \mathbf{1}} \end{array} \begin{bmatrix} \text{Gaussian correlation} & \text{Gaussian correlation} \\ \text{for the } d \text{th dimensional deviation} \\ \text{Correlation function matrix} \\ \text{whose elements} \\ \text{Correlation vector} \\ \text{for } x \text{ and each in the dataset} \\ \end{array}$$

Since the differentiation calculation is a linear operation, if the process is mean-square differentiable,

The Expected Gradient	is equivalent to the gradient of the expected function value. (the approximate objective function)	$\hat{g}(\mathbf{x}) = \begin{bmatrix} \frac{\partial \hat{f}(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial \hat{f}(\mathbf{x})}{\partial x_d}, \dots, \frac{\partial \hat{f}(\mathbf{x})}{\partial x_D} \end{bmatrix} \qquad J(\mathbf{x})_{i,d} = \frac{\partial k(x_{i,d}, x_d)}{\partial x_d}$ $= J(\mathbf{x})^{T} K^{-1} (f - 1\mu)$
		→ Gradient-based searches can be annlied!!

Experiment

≻

Pa

- Experimental Design
- IEEE CEC'13 benchmark suite (Single-obj., Real-coded)

28		
10, 30		
1,000		
15		

Compared Algorithm Parameter setting follow the papers.

GPEME [Liu+ 14]	S-JADE* [Cai+ 19]							
IKAEA [Zhan+ 21]	SAHO [Pan+ 21]							
GSGA* [Cai+ 20], Proposal*								
* : SAEAs that alternate global and local search phases								
- 100 E = 0.5 CR = 0.9 (rigrificance level = 0.06)								

Fitness values (1,000 FEs, $D = 30$ as an example)					Wilcoxon's rank-sum test (+/-/~)						
S-JADE	SAHO	GPEME	IKAEA	GSGA	Proposal	D	FE	vs S-JADE	vs SAHO	vs GPEME	vs IKAEA
6.92E+00+	1.88E-15 +	6.71E+02 -	3.12E-02 +	3.48E-04 +	2.75E+02		200	11/ 1/16	12/ 0/16	2/12/14	5/10/13
9.40E+07 -	1.06E+07 +	1.41E+08 -	7.57E+07 -	1.05E+08 -	3.61E+07		400	7/ 8/13	9/ 2/17	5/11/12	4/13/11
2.07E+15~	4.05E+17 -	4.59E+11~	1.81E+16~	2.95E+11+	5.69E+13	10	600	8/11/ 0	6/10/12	7/11/10	4/11/13
8.40E+04 +	1.25E+05~	1.75E+05 -	1.06E+05 ~	1.61E+05 -	1.17E+05	10	800	7/12/ 9	5/12/10	5/11/10	4/12/12
3.12E+03~	1.79E+02 +	1.34E+03 +	3.07E+03~	2.75E+03~	2.53E+03		1 000	7/13/ 0	5/13/10	3/11/12	4/12/12
1.08E+02~	4.22E+01 +	7.66E+01+	2.02E+02 -	1.05E+02~	1.28E+02		1,000	//15/ 8	5/13/10	8/ 9/11	5/13/10
2.06E+04 -	2.09E+05 -	1.13E+03 ~	1.11E+05 ~	4.49E+02 +	2.61E+03		200	12/ 1/15	4/ 6/18	0/14/14	2/15/11
2.12E+01~	2.12E+01~	2.12E+01~	2.12E+01~	2.12E+01~	2.12E+01	30	400	8/ 4/16	9/ 6/13	3/ 9/16	2/ 8/18
3.75E+01-	2.97E+01~	2.85E+01~	4.40E+01 -	3.87E+01-	2.96E+01		600	6/ 7/15	8/ 7/13	4/ 8/16	4/ 7/17
5.84E+01~	1.25E+00 +	2.98E+02 -	9.39E+00 +	1.22E+02 -	6.44E+01		800	7/11/10	6/10/12	4/10/14	5/11/12
2.87E+02 -	2.80E+02-	1.69E+02 -	2.97E+02 -	2.52E+02 -	1.24E+02		1.000	4/13/11	6/ 9/13	5/12/11	4/13/11
3.02E+02 -	2.39E+02 -	2.94E+02 -	3.00E+02 -	2.87E+02 -	1.38E+02	_					
3.18E+02 -	3.00E+02 -	2.98E+02 -	2.96E+02 -	3.33E+02 -	2.58E+02						
7.90E+03 -	6.14E+03~	5.48E+03~	6.36E+03~	7.05E+03 -	5.30E+03	Average rank					
8.67E+03 -	6.65E+03~	8.90E+03 -	8.80E+03 -	8.62E+03 -	7.11E+03				Averag	JC TATIK	
4.51E+00~	4.59E+00~	4.46E+00~	4.74E+00~	4.58E+00~	4.40E+00	6	1	S-JADI	SAHO	6	
2.74E+02~	2.70E+02~	2.56E+02~	3.14E+02 -	2.85E+02 -	2.44E+02			GPEM	e — Ikaea		GPEME
2.91E+02 +	2.92E+02~	3.28E+02~	3.24E+02~	3.44E+02~	3.21E+02	5	1.	- GSGA	Proposal	- 5 A.	- GSGA
4.67E+04~	2.95E+05 -	7.49E+03 +	8.21E+03 +	1.88E+02 +	4.39E+04	nk.	× .			A.	
1.50E+01~	1.50E+01~	1.48E+01~	1.50E+01 -	1.50E+01 -	1.49E+01	er 4	- Mon	Lunin	m	4	my man
2.41E+03 +	4.34E+03 -	4.66E+03 -	2.43E+03 +	1.56E+03 +	2.75E+03	80	me	200 C		XTONE	a brook
8.47E+03 -	6.62E+03~	5.90E+03 ~	6.74E+03~	7.55E+03 -	5.68E+03	BI 3		- and	martin.	3	A State
9.17E+03 -	6.42E+03 +	9.28E+03 -	9.34E+03 -	9.06E+03 -	7.66E+03	AV.	5	m			N
2.99E+02-	2.88E+02~	2.72E+02+	2.99E+02 -	3.03E+02 -	2.84E+02	- 2	alas.			2	
3.16E+02 -	3.02E+02 -	2.84E+02 +	3.34E+02 -	3.08E+02 -	2.93E+02	~			D 10		
3.35E+02~	3.59E+02~	3.85E+02 -	3.58E+02~	3.64E+02~	3.50E+02				D = 10	1	
1.17E+03 -	1.08E+03~	1.03E+03~	1.49E+03 -	1.28E+03 -	1.08E+03	1	<u> </u>				000 00
4.65E+03~	7.51E+03 -	5.38E+03 -	5.37E+03~	4.03E+03~	4.16E+03		200	400 600	800 1,0	00 200 40	000.000

6/ 5/17

7/12/ 9 7/15/ 6

7/13/ 8

7/10/11

6/ 5/17

4/10/14

5/12/11

6/14/ 8

5/16/ 7

- S-JADE ---- SAHO GPEME ---- IKAEA

D = 30

- GPEME - GSGA

600 800

4/13/1 An expected gradient-based intensive search succeeded in improving the performance of SAEA.