Utilizing the Expected Gradient in Surrogate-assisted Evolutionary Algorithms

Kei NISHIHARA, Masaya NAKATA Yokohama National University, Japan

Paper (PDF) Mail

Surrogate-assisted Evolutionary Algorithm (SAEA)

- SAEAs are an effective approach to addressing expensive optimization problems (EOPs)
 - Function evaluations (FEs) in EOPs are computationally or financially expensive
 - SAEAs estimate a promising solution among candidates by assessing their quality with surrogates
 - Surrogates usually approximate the objective functions Gaussian Process (GP), Radial Basis Function Network (RBFN), etc. ...
- Modern SAEAs alternates global and local search phases

Global	Phase	Local			
Whole landscape	Approximation target	Promising region			
Find a new region	Purpose	Intensive search			
Evolutionary Algorithm Optim	ize for	Chippes.conf.) 1000 </th			

Many SAEAs set a small number of generations ω [Cai+ 19]

Possible reasons

- to reduce the runtime
- to prevent solutions from being guided to the wrong region

 ω generations Surrogate

Expensive FE

e.g.) $\omega = 30$ in GORS-SSLPSO [Yu+ 19] and SAHO [Pan+ 21]

Expected Gradient in GP

Objective function $f: \mathbb{R}^D \to \mathbb{R}$

Dataset $\{(x_i, f(x_i))\}_{i=1}^n \ (x_i \in \mathbb{R}^D)$

The approximation of $f(x) = \hat{f}(x) = \mu + k_x^T K^{-1} (f - 1\mu), \mu = \frac{1^T K^{-1} f}{1^T K^{-1} 1}$

Gaussian correlation for the *d*th dimensional deviation

$$k_{ij,d}(x_{i,d}, x_{j,d}) = \exp(-\theta_d || x_{i,d} - x_{j,d} ||^2)$$

Correlation function matrix K (size: $n \times n$) whose elements $k_{ij}(x_i, x_j) = \prod_{d=1}^n k_{ij,d}(x_{i,d}, x_{j,d})$

Proposal: expected gradient-based SAEA

Get N samples with Latin Hypercube Sampling (LHS) and Evaluate them Construct an archive $\overbrace{\mathcal{A}}$ with initial samples and their fitness values while terminal criteria are not met

Correlation vector k_x (size: $n \times 1$) for x and each in the dataset

Since the differentiation calculation is a linear operation, if the process is mean-square differentiable,

The Expected Gradient

is equivalent to the gradient of the expected function value. (the approximate objective function)

$$\hat{g}(x) = \begin{bmatrix} \frac{\partial \hat{f}(x)}{\partial x_1}, \dots, \frac{\partial \hat{f}(x)}{\partial x_d}, \dots, \frac{\partial \hat{f}(x)}{\partial x_D} \end{bmatrix}$$
$$= J(x)^{\mathsf{T}} K^{-1} (f - 1\mu)$$
$$J(x)_{i,d} = \frac{\frac{\partial k(x_{i,d}, x_d)}{\partial x_d}}{\partial x_d} \rightarrow \text{Gradient-based searched}$$
can be applied

Experiment

Results

F1

F2

F3

S-JADE

6.92E+00 +

9.40E+07 –

2.07E+15 ~

- Fitness values (1,000 FEs, D = 30 as an example)
- **Experimental Design**
- IEEE CEC'13 benchmark suite

for one	generation
---------	------------

built with A

alues (1,0	00 FEs, D	= 30 as a	n example))	Wilcoxon's rank-sum test (+/-/~)							
SAHO	GPEME	IKAEA	GSGA	Proposal	D	FE	vs S-JADE	vs SAHO	vs GPEME	vs IKAEA	vs GSGA	
1.88E-15 +	6.71E+02 –	3.12E-02 +	3.48E-04 +	2.75E+02		200	11/ 1/16	12/ 0/16	2/12/14	5/10/13	6/ 5/17	
1.06E+07 +	1.41E+08 –	7.57E+07 –	1.05E+08 –	3.61E+07		400	7/ 8/13	9/ 2/17	5/11/12	4/13/11	7/12/ 9	
4.05E+17 –	4.59E+11 ∼	1.81E+16 ~	2.95E+11 +	5.69E+13	10	600	8/11/ 0	6/10/12	7/11/10	1/11/13	7/15/ 6	

Number of functions	28	
Problem dimension D	10, 30	
Maximum number of FEs	1,000	
Number of runs	15	

Compared Algorithm Parameter settings follow the papers.

GP	RBFN							
GPEME [Liu+ 14]	S-JADE* [Cai+ 19]							
IKAEA [Zhan+ 21]	SAHO [Pan+ 21]							
GSGA* [Cai+ 20], Proposal*								
* : SAEAs that alternate	global and local search phases							
Parameter settings of our propo	osal Wilcoxon's rank-sum tes							

N = 100, F = 0.5, CR = 0.9,M = 3, K = 50, L = 5D

worst

best

(significance level = 0.05)+ : our proposal underperforms - : our proposal outperforms ~ : cannot find significance

:3	$2.07E+15 \sim$	4.05E+17 –	4.59E+11 ∼	1.81E+16 ~	2.95E+11 +	5.69E+13	10	600	8/11/ 9	6/10/12	7/11/10	4/11/13	7/15/ 6
74	8.40E+04 +	$1.25E+05 \sim$	1.75E+05 –	1.06E+05 \sim	1.61E+05 –	1.17E+05	10	800	7/13/ 8	5/13/10	5/11/12	4/12/12	7/13/ 8
75	3.12E+03 ~	1.79E+02 +	1.34E+03 +	3.07E+03 ~	2.75E+03 ~	2.53E+03		1 000	7/13/ 0	5/15/10	$\frac{3}{11}\frac{12}{12}$	$\frac{4}{12}$	7/10/11
76	1.08E+02~	4.22E+01 +	7.66E+01 +	2.02E+02 -	$1.05E+02 \sim$	1.28E+02		1,000	//15/ 0	5/15/10	0/ 9/11	5/15/10	//10/11
7	2.06E+04 -	2.09E+05 -	1.13E+03 ~	$1.11E+05 \sim$	4.49E+02 +	2.61E+03		200	12/ 1/15	4/ 6/18	0/14/14	2/15/11	6/ 5/17
78	$2.12E+01 \sim$	$2.12E+01 \sim$	$2.12E+01 \sim$	$2.12E+01 \sim$	$2.12E+01 \sim$	2.12E+01		400	8/ 4/16	9/ 6/13	3/ 9/16	2/ 8/18	4/10/14
79	3.75E+01 –	2.97E+01 ∼	2.85E+01~	4.40E+01 –	3.87E+01 –	2.96E+01	30	600	6/ 7/15	8/ 7/13	4/ 8/16	4/ 7/17	5/12/11
F10	5.84E+01 ~	1.25E+00 +	2.98E+02 –	9.39E+00 +	1.22E+02 -	6.44E+01		800	7/11/10	6/10/12	4/10/14	5/11/12	6/14/ 8
711	2.87E+02 –	2.80E+02 –	1.69E+02 –	2.97E+02 –	2.52E+02 -	1.24E+02		1,000	4/13/11	6/ 9/13	5/12/11	4/13/11	5/16/ 7
712	3.02E+02 –	2.39E+02 –	2.94E+02 –	3.00E+02 -	2.87E+02 -	1.38E+02		II					
13	3.18E+02 –	3.00E+02 –	2.98E+02 –	2.96E+02 –	3.33E+02 -	2.58E+02							
14	7.90E+03 –	6.14E +03 \sim	$5.48E+03 \sim$	6.36E+03 ~	7.05E+03 –	5.30E+03				Average	e rank		
15	8.67E+03 –	6.65E+03 ~	8.90E+03 –	8.80E+03 –	8.62E+03 –	7.11E+03	0			///01/490			
716	$4.51E+00 \sim$	$4.59E+00 \sim$	$4.46E+00 \sim$	4.74E +00 \sim	$4.58E+00 \sim$	4.40E+00	6		S-JADI	E — SAHO	6	—— S-JADE	—— SAHO
17	$2.74E+02 \sim$	$2.70E+02 \sim$	$2.56E+02 \sim$	3.14E+02 –	2.85E+02 -	2.44E+02			GPEM	E — IKAEA		GPEME	IKAEA
F18	2.91E+02 +	$2.92E+02 \sim$	3.28E+02 ∼	$3.24E+02 \sim$	$3.44E+02 \sim$	3.21E+02	5		—— GSGA	→ Proposal_	$5 \vdash $	—— GSGA	Proposal_
F19	4.67E+04 ~	2.95E+05 –	7.49E+03 +	8.21E+03 +	1.88E+02 +	4.39E+04	huk	March			Am	an anna a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F20	$1.50E+01 \sim$	$1.50E+01 \sim$	1.48E+01 ~	1.50E+01 –	1.50E+01 –	1.49E+01	<u>5</u> 4	- mail		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4		
21	2.41E+03 +	4.34E+03 –	4.66E+03 –	2.43E+03 +	1.56E+03 +	2.75E+03	ge	1000 minut	June -		A Career	and the second second	
-22	8.47E+03 –	6.62E+03 ~	5.90E+03 ~	6.74E+03 ~	7.55E+03 –	5.68E+03	2 GL 2	-	and the second		3	Jun and the second	
23	9.17E+03 –	6.42E+03 +	9.28E+03 –	9.34E+03 –	9.06E+03 -	7.66E+03	Αv	and the second			- Alexandrea	M	
24	2.99E+02 -	2.88E+02 ~	2.72E+02 +	2.99E+02 –	3.03E+02 –	2.84E+02	2	-			2		_
725	3.16E+02 –	3.02E+02 –	2.84E+02 +	3.34E+02 –	3.08E+02 -	2.93E+02				D = 10			D = 30
726	3.35E+02 ~	$3.59E+02 \sim$	3.85E+02 –	3.58E+02 ~	3.64E+02 ∼	3.50E+02	1			D = 10			
27	1.17E+03 –	$1.08E+03 \sim$	1.03E+03 ~	1.49E+03 –	1.28E+03 –	1.08E+03	T	$\frac{1}{200}$	100 600	800 1.000	200 40	0 600	800 1 000
28	4.65E+03 ~	7.51E+03 –	5.38E+03 –	$5.37E+03 \sim$	4.03E+03 ~	4.16E+03	_	200 2	100 000	300 1,000	, 200 40		
+/-/~	4/13/11	6/9/13	5/12/11	4/13/11	5/16/7				Fitness Evalu	ations	Fi	itness Evaluat	ions

An expected gradient-based intensive search succeeded in improving the performance of SAEA.