A Surrogate-assisted Partial Optimization for Expensive Constrained Optimization Problems Kei NISHIHARA, Masaya NAKATA Yokohama National University, Japan

Paper (PDF)

Mai

Background

Constrained Optimization Problem (COP)

Definition

Single-objective minimization problems with inequality constraints are focused.

Minimize $f(\mathbf{x})$ s.t. $g_m(x) \le 0, m = 1, 2, ..., M$

Feasibility

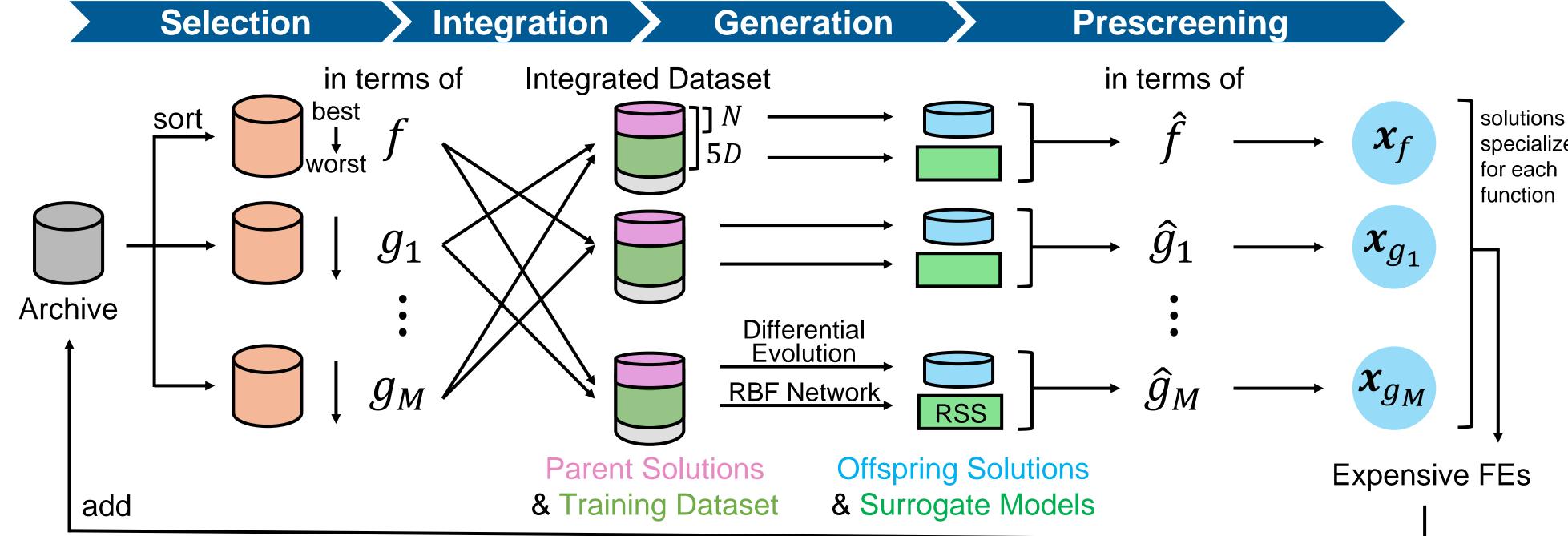
A solution x is feasible if the degree of constraint violation G(x) meets

 $G(\mathbf{x}) = \sum_{m=1}^{M} \max(g_m(\mathbf{x}), 0) = 0.$

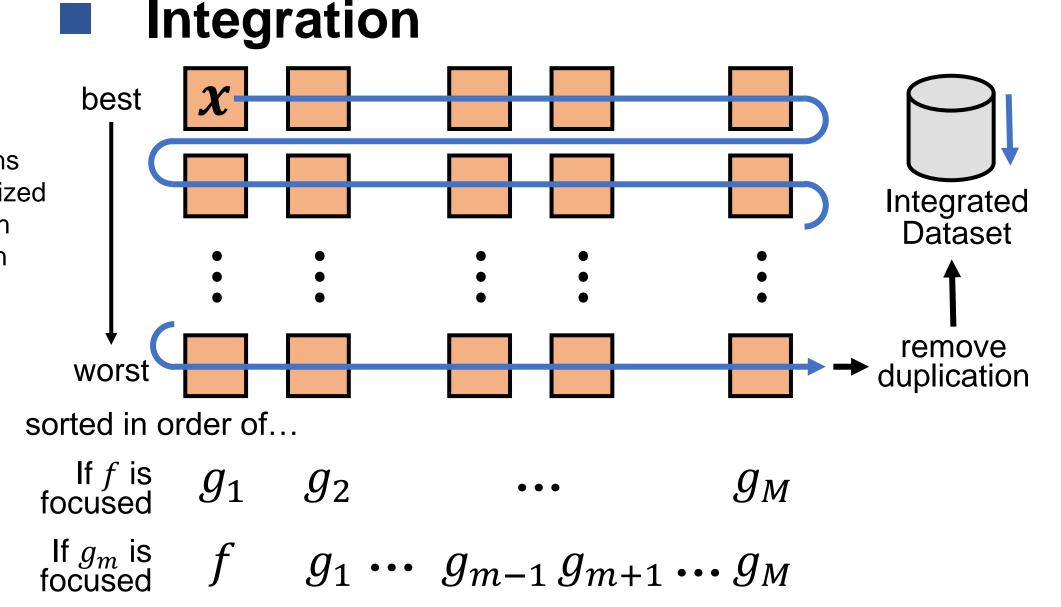
Related Work

• How to use an RSS in the existing SAEAs

 $\hat{G}(x) = \sum_{m=1}^{M} \max(\hat{g}_m(x), 0)$ approximation of G(x)


 $\boldsymbol{x}^* = \begin{cases} \arg\min \hat{f}(\boldsymbol{x}), & \mathcal{F} = \{\boldsymbol{x} \mid \hat{G}(\boldsymbol{x}) = 0\} \neq \emptyset \\ x \in \mathcal{F} & \text{(solutions expected to be feasible)} \end{cases}$ $\arg\min \widehat{G}(\mathbf{x})$, otherwise

examples: SA-DECVFR [Miranda-Varela+ 18], GLoSADE [Wang+ 19], SACCDE [Yang+ 20], FMSADE [Chu+ 20], and SA-TSDE [Liu+ 23]


- Penalty Function [Homaifar+ 94] $\widehat{F}(x) = \widehat{f}(x) + \lambda \widehat{G}(x)$ example: MPMLS [Li+ 21]
- Surrogate-assisted Evolutionary Algorithm (SAEA)
 - Expensive COPs (ECOPs) are widely seen in the real world. Function evaluations (FEs) are computationally and/or financially expensive.
 - SAEAs are a representative methodology for ECOPs. Machine learning models act as surrogates for parts of expensive FEs. Thus, SAEAs can save the number of FEs.
 - Most SAEAs construct a response surface set (RSS). An RSS is a set of approximation models of the objective and constraint functions. $RSS = \{\hat{f}(\mathbf{x}), \hat{g}_1(\mathbf{x}), \hat{g}_2(\mathbf{x}), \dots, \hat{g}_M(\mathbf{x})\}$
- Solutions are prescreened only with $\widehat{G}(x)$, i.e., aggregation of \hat{g}_m s, although each \hat{g}_m can be independently utilized.
 - The feasibility of solutions is easily estimated.
 - Errors of $\hat{g}_m g_m$ accumulate in \hat{G} . X
 - The differences in scales between \hat{g}_m s are ignored. Small scale \hat{g}_m s: Improvement is prevented by larger scale \hat{g}_m s. Large scale \hat{g}_m s: Constraint handling effects scatter to other trivial \hat{g}_m s.
 - The g_m s are not always correlated with each other. X

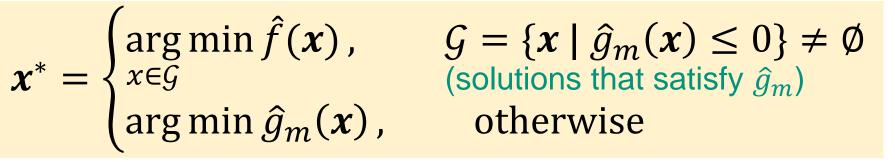
Proposed Algorithm: Surrogate-assisted Partial Optimization (SAPO)

- > Inspired by Partial Differential Equation $\frac{\partial y}{\partial x}$ Focusing on one element improves the efficiency of structure analysis or optimization [Liu+ 21][Evans 22].
- An SAEA that partially (independently) optimizes each objective/constraint in turn
 - Framework

Detailed Procedures

Advantages

- Each f or g_m is directly improved thus a greater number of FEs is saved.
- Multiple criteria to prescreen offspring keep solution diversity high.
- SAPO can handle ECOPs where the scale of the constraints vary widely or the constraints are not correlated with each other.


Prescreening

If *f* is focused

Apply the feasibility rule to offspring solutions

If g_m is focused

Future work

Experiment Experimental Design: IEEE CEC2017 single-objective constrained real-parameter benchmark suite ($D \in [30, 50, 100\}$) [Wu+ 17], Maximum number of FEs = 3,000, Number of runs = 31 **Parameter Settings of SAPO**: $N = 100, F = 0.5, CR = 0.9, N_{init} = 100 (D \in \{30, 50\}), 200 (D = 100), kernel = cubic$. Wilcoxon's rank-sum test

			Falametei	Settings 0	SAFU. IV	= 100, F = 0	$J_{1}J_{1}J_{1}J_{1}J_{1}J_{1}J_{1}J_{1}$	J.9 , N _{init} —	$IUU(D \in \{$	50, 50}), 20	0(D - 100)), kernet —	(signif	ficance level = 0.05		Wilcoxo	n's rank	-sum test	(+/-/~)	
• Co	mpai	rison v	with sta	ate-of-	the-art	SAEA	S bes	t wors	st no fe	asible solutio	n is found in	all algorithms		ompared algorithm ompared algorithm	•	D FE (GLoSADE	FMSADE	MPMLS	SA-TSDE
									(n): n	umber of succe	essful runs am	ong 31 runs		annot find signification	-	300	0/ 3 /6	0/ 4 /5	0/ 3 /6	1 / 1 /7
Fitness val			D = 30					D = 50				0	D = 100	-		500	0/5/4	0/5/4	0/3/6	2/1/6
															C A D O	30 1,000	0/6/3	0/6/3	0/5/4	1/3/5
	GLoSADE	FMSADE	MPMLS	SA-TSDE		GLoSADE	FMSADE	MPMLS	SA-TSDE	SAPO	GLoSADE	FMSADE	MPMLS	SA-TSDE	SAPO	2,000	$0/{f 7}/2$	$0/{f 7}/2$	1/ 7 /1	$0/{f 5}/4$
F1 (1) 9.5	557e + 03 -	4.164e + 04 -	2.499e+04 -	- $7.389\mathrm{e}{+03}$ -	- <mark>5.400e+03</mark>	3.038e+04 - 1	.064e + 05 -	6.341e + 04 -	$3.852\mathrm{e}{+04}$ -	-2.547e+04	$ 1.644e{+}05 \sim$	4.964e + 05 -	2.352e + 05 -	$ m 1.597e{+}05 \sim$	$-1.624e{+}05$	3,000	$0/{f 7}/2$	$0/{f 7}/2$	1/ 5 /3	0/ 6 /3
F2 $(1) \stackrel{\text{g}}{=} 4.0$	032e + 03 -	(1) -	$5.468e{+}03 -$	- $3.070\mathrm{e}{+03}$ -	- 2.110e+03	1.707e + 04 -	(0) -	2.087e + 04 -	$1.487\mathrm{e}{+04}$ -	-1.056e+04	1.314e+05 -	(0) -	$9.185\mathrm{e}{+04}$ –	$9.066\mathrm{e}{+04}$ –	7.763 e + 04	300	$0/{f 3}/6$	$1/{f 3}/5$	$0/{f 3}/6$	2 / 2 /5
F4 (2) $\stackrel{6}{\sqsubseteq}$ 3.8	883e + 02 -	4.060e+02 -	$1.973\mathrm{e}{+02} \sim$	$\sim~2.148\mathrm{e}{+02}$ -	- 1.888e+02	6.819e + 02 - 6	.686e + 02 -	4.574e + 02 -	$3.507\mathrm{e}{+02}$ -	- <mark>3.100e+02</mark>	$ 1.491e{+}03 -$	1.523e + 03 -	$1.257 e{+}03 -$	$8.659 \mathrm{e}{+02}$ –	7.750e + 02	500	$0/{f 3}/6$	$0/{f 4}/5$	$0/{f 3}/6$	2 /1/6
F5 $(2) \stackrel{\text{S}}{\leftarrow} 4.1$	178e + 01 -	3.183e + 02 -	2.895e+01	$\sim 5.707 \mathrm{e}{+}01$ –	- 3.251e+01	2.444e + 03 -	(27) -	$1.210 \mathrm{e}{+02}$ –	$1.879\mathrm{e}{+03}$ -	- <mark>9.113</mark> e+01	4.271e+04 -	(25) -	$2.094e{+}03 -$	$2.385\mathrm{e}{+04}$ –	1.384e + 03	50 1,000	$0/{f 5}/4$	$0/{f 5}/4$	$0/{f 5}/4$	2 / 2 /5
$F12 (2) \stackrel{\checkmark}{\underline{\circ}} 1.5$	517e + 02 -	(0) -	$1.559e{+}01 -$	- (30) $-$	1.261e + 01	(0) -	(0) -	$1.052e{+}02 -$	(0) -	$\mathbf{1.429e}{+}01$	(0) -	(0) -	(0) -	(0) -	(19)	2,000	0/ 6 /3	$0/{f 7}/2$	0/ 6 /3	$0/{f 5}/4$
F13 (3) 🧧	(0) -	(0) -	(0) -	(7) \sim	(7)	$(0) \sim$	$(0) \sim$	$(0) \sim$	$(0) \sim$	(0)	$(0) \sim$	$(0) \sim$	$(0) \sim$	$(0) \sim$	(0)	3,000	0/ 6 /3	$0/{f 6}/3$	0/ 6 /3	0/ 6 /3
F20 (2) 💆 9.8	$801\mathrm{e}{+00}\sim$	$1.002e{+}01 \sim$	9.589e+00 -	+ 9.920e+00 \sim	$\sim 9.877\mathrm{e}{+00}$	$1.824e+01 \sim 1$	$.882e{+}01\sim$	$1.803\mathrm{e}{+01}$ ~	$\sim 1.860\mathrm{e}{+01}$ ~	$\sim 1.838\mathrm{e}{+01}$	4.007e+01 +	$4.067\mathrm{e}{+01}\sim$	3.969e+01 -	- $4.113e+01 \sim$	$4.093 e{+}01$	300	0/ 2 /7	$0/{f 3}/6$	0/ 1 /8	2 / 2 /5
F21 $(2) =$	(0) -	(0) -	(29) -	(0) -	$1.075\mathrm{e}{+01}$	(0) -	(0) -	(0) -	(0) -	(30)	$(0) \sim$	$(0) \sim$	$(0) \sim$	$(0) \sim$	(0)	500	1/ 2 /6	$0/{f 3}/6$	1/ 2 /6	2 / 2 /5
$F22$ (3) \ge	$(0) \sim$	$(0) \sim$	$(0) \sim$	$(0) \sim$	(0)	$(0) \sim$	$(0) \sim$	$(0) \sim$	$(0) \sim$	(0)	$(0) \sim$	$(0) \sim$	$(0) \sim$	$(0) \sim$	(0)	100 1,000	1/ 3 /5	$0/{f 4}/5$	1/ 2 /6	2 / 2 /5
+/-/~	0/ 7 /2	0/ 7 /2	1/ 5 /3	0/ 6 /3	-	0/ 6 /3	$0/{\bf 6}/3$	0/ 6 /3	0/ 6 /3	_	1/4/4	$0/{f 5}/4$	$1/{f 5}/3$	0/ 4 /5	-	2,000	$0/{f 3}/6$	$0/{f 4}/5$	$1/{f 3}/5$	1/ 2 /6
Ave. Rank	3.222	4.556	2.556	3.056	1.611	3.278	4.167	2.833	3.056	1.667	3.278	3.944	2.833	2.833	2.111	3,000	1/4/4	$0/{f 5}/4$	1/ 5 /3	0/ 4 /5

SAPO found more and better feasible solutions within a smaller number of FEs than compared SAEAs thanks to the proposed partial optimization.

Ablation Studies

- Three variants of SAPO were compared with the original SAPO.
 - **VUA:** Only the approximation of G, i.e., \hat{G} is used. – A similar setting to the existing SAEAs.
 - **VTO:** Only the objective function \hat{f} is focused.
 - To confirm the need to focus on \hat{g}_m s. **VTC**: Only the constraint functions $\hat{g}_m s$ are focused. – To confirm the need to focus on \hat{f} .
- **Results** The original SAPO outperformed the variants towards the end of optimization.
 - **VUA & VTO :** These variants suffered from the premature convergence.
 - Many FEs were used to get already found feasible solutions and infeasible solutions with good \hat{f} , respectively.
 - **VTC** : The fitness values f did not improve. Focusing only \hat{g}_m s was not suitable.

Wilco	kon's ra	 - : Variant underperforms ~ : Cannot find significance 									
		D = 30)		D = 50)	D = 100				
\mathbf{FE}	VUA	VTO	VTC	VUA	VTO	VTC	VUA	VTO	VTC		
300	3/1/5	3/0/6	1/4/4	2/0/7	3/0/6	0/3/6	2/0/7	4/0/5	0/4/5		
500	1/3/5	3/0/6	0/ 8 /1	5/0/4	5 /0/4	1/4/4	4/0/5	4 /0/5	0/4/5		
$1,\!000$	$0/{f 5}/4$	$0/{\bf 5}/4$	0/ 8 /1	4/0/5	4 /0/5	$0/{\bf 6}/3$	6/0/3	4 /0/5	0/6/3		
2,000	$0/{f 5}/4$	0/4/5	0/ 8 /1	2/1/6	2 / 2 /5	0/ 7 /2	2/1/6	2/1/6	0/7/2		
$3,\!000$	$0/{f 5}/4$	$0/{\bf 3}/6$	0/ 8 /1	0/3/6	$0/{f 3}/6$	$0/{\bf 6}/3$	1/3/5	1/ 2 /6	0/6/3		
E 4.		•	Adaptiv	ve selec	tion of j	\hat{f} and \hat{g}_{r}	_n s to be	e optimiz	zed		

• Extension of SAPO for multi-objective ECOPs

(significance level = 0.05)

+: Variant outperforms