Complex & Intelligent Systems

Emulation-based Adaptive Differential Evolution: Fast and Auto-tunable Approach for Moderately Expensive Optimization Problems

Yokohama National University

Kei Nishihara, Masaya Nakata

NaKaTaLab

Dec. 30th, 2023

Background

[Shan+ 10]

Expensive Optimization Problem (EOP) in real-world

- \geq Function Evaluation (FE) is computationally or financially expensive in EOPs.
- > The number of FE is restricted due to limited budget.

Classification of EOP

Non-expensive (Normal)

Problem Example

Moderately EOP (M-EOP)

Automatic Calibration of Watershed Models [Makumbura+ 22]

EOP

Vehicle Structure Optimization [Oyama+ 17]

Evaluation Time Ex.	Less than 1 second	2 minutes	20 hours
Max. Number of FEs	Hundreds of thousands	Several thousand	Hundreds to a few thousand
Main approach	Evolutionary Algorithm (EA)	Not adequately researched	Surrogate-assisted EA (SAEA) (to be explained in detail next)

Research Purpose

SAEA: Main Approach for EOPs

- Usefulness in EOPs (Hundreds to a few thousand FEs)
 - Surrogates of the objective function are constructed using machine learning (ML).
 - Surrogates identify expected-to-improve solutions without FE.

e.g., Expected Improvement (EI) metric [Jones+ 98]

$$E[I(\mathbf{x})] = (f_{\min} - \hat{y})\Phi\left(\frac{f_{\min} - \hat{y}}{s}\right) + s\phi\left(\frac{f_{\min} - \hat{y}}{s}\right)$$

- Limitations in M-EOPs (Several thousand FEs)
 - 1. Premature convergence [Sun+ 15] SAEAs have strong exploitation nature.
 - 2. Time-consuming [Briffoteaux 22]

ML models are repeatedly construct/used. Reducing the runtime is crucial in M-EOPs.

3. Fixed parameter configuration [Lobo+ 07] Advance fine-tuning is hindered in (M-)EOPs although tuning configuration is important.

• Need for an approach for M-EOPs

Research

Purpose

Proposing a 1) High-performance, 2) Fast, and 3) Auto-tunable EA for M-EOPs.

Research Approach

Auto-tunable and Computationally Efficient Adaptive EA

- Adaptive EA
 - Auto-tunable: Parameter configurations are automatically controlled during a run.
 - Much faster than SAEAs: Adaptive EAs do not use ML techniques.
 - Slow convergence: Most are not for (M-)EOPs, i.e., hundreds of thousands of FEs.
- Idea to boost convergence speed

Existing Adaptive EAs

Trial-and-error Adaptation

Configurations are updated based on ones generated good solutions in past generations.

Individual-based Adaptation

The effectiveness of each configuration is usually validated with only one sample.

Proposed Algorithm

Adaptation with Prior Validation

Pre-screen candidate configurations before use without FE.

Subpopulation-based Adaptation

The effectiveness of configurations are carefully validated using multiple samples.

Preliminary

Component

Differential Evolution (DE)

A population-based evolutionary algorithm

Initialize $\mathcal{P} = \{x_1, x_2, \dots, x_N\}$

while termination criteria are not met \mathbf{do}

[Storn+ 97]

t = t + 1

```
for i = 1 to N do
```

 $v_i \leftarrow Mutation(\mathcal{P}, \theta_{v,i}, \theta_{F,i})$

 $u_i \leftarrow Crossover(x_i, v_i, \theta_{u,i}, \theta_{CR,i})$

for i = 1 to N do $x_i \leftarrow \begin{cases} u_i & \text{if } f(u_i) \le f(x_i) \\ x_i & \text{otherwise} \end{cases}$ **Mutation**: generate a mutant solution v_i for each x_i

parameter	Scaling factor θ_F e	∃ [0, 1]
strategy (mutation strategy)	rand/1 rand/2 best/1 best/2 current-to-rand/1 current-to-best/1 current-to-pbest/1 rand-to-best/1	$\begin{aligned} v_i &= x_{r1} + \theta_F(x_{r2} - x_{r3}) \\ v_i &= x_{r1} + \theta_F(x_{r2} - x_{r3}) + \theta_F(x_{r4} - x_{r5}) \\ v_i &= x_{best} + \theta_F(x_{r1} - x_{r2}) \\ v_i &= x_{best} + \theta_F(x_{r1} - x_{r2}) + \theta_F(x_{r3} - x_{r4}) \\ v_i &= x_i + \theta_F(x_{r1} - x_i) + \theta_F(x_{r2} - x_{r3}) \\ v_i &= x_i + \theta_F(x_{best} - x_i) + \theta_F(x_{r1} - x_{r2}) \\ v_i &= x_i + \theta_F(x_{best} - x_i) + \theta_F(x_{r1} - x_{r2}) \\ v_i &= x_i + \theta_F(x_{best} - x_i) + \theta_F(x_{r2} - x_{r3}) \end{aligned}$
Crossover:	generate a trial	solution $oldsymbol{u}_i$ from $oldsymbol{x}_i$ and $oldsymbol{v}_i$
parameter	Crossover rate θ_{Cl}	_R ∈ [0, 1]
strategy	binomial : $u_{i,j} =$	$\begin{cases} v_{i,j}, & \text{if } (rand(0,1) \leq \theta_{CR}) \text{ or } (j = j_{rand}) \\ x_{i,j}, & \text{otherwise} \end{cases}$

exponential : a method like one/two-point crossover in GA

Selection: select next x_i from current x_i and u_i

(crossover strategy)

Related Works

Prob. Dim. Max. # of FEs

Adaptive/Surrogate-assisted DE

Indiv.: individual-based adaptation

Each solution x_i has its own configuration θ_i .

Subpop.: subpopulations-based adaptation

Solutions in a subpopulation use same θ .

- Many adaptive DEs are Indiv.
 - Recently, Subpop. begins to gain popularity.
- Some surrogate-assisted DEs incorporate adaptive mechanism into SAEAs.
 - However, they are usually Indiv.
- Position of Proposed Algorithm

Subpop. and for M-EOPs

Algorithm	Adaptation St	yle D	FE_{max}		
	adapti	ve DEs			
jDE [3]	Indiv.	$\{2, \overline{4}, \overline{30}\}$	10,000-20,000,000		
FDSADE [53]	Indiv.	$\{2, 4, 30\}$	50,000		
ISADE [15]	Indiv.	30	300,000		
JADE [63]	Indiv.	$\{2, 3, 4, 6, 30, 100\}$	6,000-8,000,000		
MDE_pBX [14]	Indiv.	$\{30, 50, 100\}$	$D \times 10,000$		
SHADE [50]	Indiv.	30	300,000		
L-SHADE 52	Indiv.	$\{10, 30, 50, 100\}$	$D \times 10,000$		
jSO [4]	Indiv.	$\{10, 30, 50, 100\}$	$D \times 10,000$		
SaDE [42]	Indiv.	$\{10, 30\}$	100,000-500,000		
CoDE [57]	Indiv.	30	300,000		
EPSDE [35]	Indiv.	$\{10, 30, 50\}$	$D \times 10,000$		
CSDE [48]	Indiv.	$\{30, 50, 100\}$	$D \times 10,000$		
AL-SHADE [24]	Indiv.	$\{10, 30, 50\}$	$D \times 10,000$		
DE-DDQN [45]	Indiv.	$\{10, 30\}$	10,000		
FLDE [49]	Indiv.	$\{10, 30, 50, 100\}$	$D \times 10,000$		
DE with Two Subpopulations [31]	Subpop.	30	300,000		
MPEDE [58]	Subpop.	$\{30, 50\}$	$D \times 10,000$		
HMJCDE [22]	Subpop.	$\{30, 50\}$	$D \times 10,000$		
EDEV [59]	Subpop.	{30, 50}	$D \times 10,000$		
	surrogate-a	ssisted DEs	,		
CADE [28]			{10,000, 20,000}		
CRADE [30]	_	$\{30, 500\}$	10,000		
GPEME [26]	_	$\{20, 30, 50\}$	1,000		
ESAO 56	_	$\{20, 30, 50, 100, 200\}$	1,000		
SAHO [40]	_	$\{10, 20, 30, 50, 100\}$	$\{110, 220, 330, 1,000\}$		
DSS-DE [32]	_	$\{30, 50, 100\}$	1,000		
SADE-ATDSC [38]	_	$\{10, 30, 50, 100\}$	1,000		
DE-ABC [62]	Indiv.	$\{2, 3, 4, 6\}$	100,000		
S-JADE [6]	Indiv.	$\{20, 30, 50, 100, 200\}$	$\{1,000, 1,500, 2,000\}$		
SBSM-DE [21]	Indiv.	$\{10, 25, 60, 72, 942\}$	12,000		
DESSA [29]	Indiv.	30	3,000		
SMA-EPSDE [33]	Indiv.	$\{10, 30\}$	$D \times 10,000$		
ESMDE [34]	Indiv.	{10, 30}	$D \times 10,000$		
Sa-DE-DPS [11]	Indiv.	$\{10, 20, 30\}$	$D \times 50$		
SAPDE-ANN, SAPDE-RSM [1]	Indiv.	$\{10, 30\}$	$D \times 10,000$		
EBADE (Proposed Algorithm)	Subpop.	$\{10, 20, 30\}$	6,000		

Columns "D" and " FE_{max} " list the problem dimension and the maximum number of fitness evaluations adopted in the experiments, respectively.

- Emulation-based Adaptive DE

Concept

Emulating the efficient sampling method of SAEAs

Prior Validation: prescreening "expected-to-improve" candidate

Subpopulation-based Adaptation: validating with respect to multiple samples

Preliminary

Parameter configuration candidates to be adapted

- Numerical parameters
 - **Scaling Factor**: $\theta_F \in [0, 1]$ **Crossover Rate**: $\theta_{CR} \in [0, 1]$
- Categorical parameters
 - **Mutation Strategy**: Right figure $\theta_v \in \{1, 2, 3, 4\}$
 - Four strategies are selected to accelerate exploitation.
 - **Crossover Strategy**: *binomial* and *exponential* (see p.6) $\theta_u \in \{1, 2\}$

Initialization

- > **Population**: Generate *M* subpopulations $\{\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_M\}$
 - Each subpopulation is composed of *N* solutions randomly generated in the search space.
- > Configuration: Generate *M* configuration vectors $\{\theta_1, \theta_2, ..., \theta_M\}$ $\theta = [\theta_F, \theta_{CR}, \theta_v, \theta_u]$
 - $\theta_F = 0.5$, $\theta_{CR} = 0.9$, θ_v and θ_u are randomly generated from their definitions.

exploitation best/1 current-to-best/1 rand-to-best/1 current-to-pbest/1 rand/1 current-to-rand/1 rand/2 Each definition is in p.6

Overall Framework

EBADE

> An example with M = 3 and K = 3, where K is the number of candidate θ s.

FIR: Fitness Improvement Ratio

$$\delta_f(\boldsymbol{x}_g) = 1 - \frac{f(\boldsymbol{x}_g)}{f(\boldsymbol{x}_{g-1}) + \delta_C}$$

- FIR is used to find the "expectedto-improve" solutions.

- $\delta_c \ge 0$ is a constant value to avoid division by 0.

Experiment

Experiment: Settings

Real-Parameter Single Objective Optimization Problem

CEC 2013 benchmark suite (28 Problems, $D = \{10, 20, 30\}, FE_{max} = \{2,000, 4,000, 6, 000, 8,000, 10,000\}$)

Compared Algorithms and Their Configurations

Adaptive DEs

- **SHADE** [Tanabe+ 13] : $N = 100, M_{F,h,init} = M_{CR,h,init} = 0.5, F_{std} = CR_{std} = 0.1, H = 100, |Archive| = 100, p_{min} = \frac{2}{N}, p_{max} = 0.2$
- **ISO** [Brest+ 17]: $N_{init} = 25 \log D^{\frac{2}{2}}$, $N_{min} = 4$, $M_{F,h,init} = 0.3$, $M_{CR,h,init} = 0.8$, $M_{F,H} = M_{CR,H} = 0.9$, $F_{std} = CR_{std} = 0.1$, $gen_{F,sep} = 0.6$, $F_{sep} = 0.7$, $F_{fix} = 0.7$, $gen_{CR,sep} = [0.25, 0.5]$, $CR_{maxcand} = [0.7, 0.6]$, $gen_{mut,sep} = [0.2, 0.4]$, weight_{mut} = [0.7, 0.8, 1.2], H = 5, |Archive| = N, $p_{min} = 0.125$, $p_{max} = 0.25$
- **CSDE** [Sun+20] : $N = 100, F_{init} = 0.5, CR_{init} = 0.5, FP = 200, \mu = 0.5, \sigma = 0.1$
- **EDEV** [Wu+ 18] : $\lambda_1 = \lambda_2 = \lambda_3 = 0.1, \lambda_4 = 0.7, ng = 20$

Surrogate-assisted DEs

- **GPEME** [Liu+ 14] : $N = 100, F = 0.8, CR = 0.8, \tau = 100, \lambda = 50, l = 4, \omega = 2, regr_{Kriging} = constant, corr_{Kriging} = gauss, \theta \in [10^{-5}, 10^2], \theta_{init} = 10^{-2}. D_{sammon,sep} = 50$
- **S-JADE** [Cai+ 19] : $N = 100, F_{out} = 0.5, CR_{out} = 0.75, p_{pbest_out} = 0.05, F_{in} = 0.5, CR_{out} = 0.5, p_{pbest_in} = 0.1, std_F = 0.1, std_{CR} = 0.1, L = 10, \epsilon = 0.01, c = 0.1, evals_{in} = 2,000, kernel_{RBF} = cubic, r = rand(0, 1.25)$
- **SAHO** [Pan+ 21] : $N = 100, F = 0.5, CR = 0.9, K = 30, neighbour = 5D(D < 50) or <math>D(D \ge 50), kernel_{RBF} = cubic$

ESMDE [Mallipeddi+ 15]: $N = 100, F \in [0.5, 1.0], CR \in [0, 1], mut \in [r/1 c - t - r/1], xov \in [bin, exp], c = 10, regr_{Kriging} = constant, corr_{Kriging} = gauss, \theta \in [10^{-5}, 10^2], \theta_{init} = 10^{-2}$

Proposed Algorithms

EBADE : N = 4, M = 25, K = 6, p = 0.5

Evaluation Metrics

- Average over 21 trials of the best fitness value
- Wilcoxon signed-rank test
- Average rank

Experiment: Results (Fitness at 6,000FEs)

• EBADE outperforms adaptive DEs and is highly competitive with SAEAs

- > EBADE is superior with statistical significance (the number of "-" is 9 to 27)
- > The best average rank is obtained by EBADE in all dimensions.

D - 10

worst value	
/ \sim in Wilcoxon test	
: ours underperforms	
: ours outperforms	

Best value

Marat value

 \sim : cannot find significance

+/-

D - 30

	$\nu = 10$								D = 50									
			Adaptive D	Es		SAEAs					Adaptive D	Es			SAEAs			
	EBADE	SHADE	$_{\rm jSO}$	CSDE	EDEV	GPEME	S-JADE	SAHO	ESMDE	EBADE	SHADE	jSO	CSDE	EDEV	GPEME	S-JADE	SAHO	ESMDE
F1	4.69E-05	7.27E-01 –	1.13E-03 –	5.22E + 00 -	4.27E+02 -	0.00E+00 +	3.03E-13 +	1.66E-28 +	1.81E-02 –	1.59E+02	2.39E + 02 -	3.27E + 02 -	1.06E+03 -	9.01E+03 -	$5.44E + 02 \sim$	3.08E-07 +	7.24E-27 +	6.34E+02 -
F2	2.18E+05	3.87E + 06 -	2.24E+03 +	9.48E+06 -	9.20E+06 -	3.14E+06 -	1.14E+05 +	4.09E+04 +	7.40E + 06 -	2.96E+07	9.54E + 07 -	1.63E+07 +	2.31E + 08 -	3.00E + 08 -	$2.36E+07 \sim$	5.74E + 06 +	4.77E + 05 +	1.87E+08 -
F3	6.46E + 03	3.38E+06 -	$7.57\mathrm{E}{+}03\sim$	4.28E+07 -	8.37E+08 -	7.93E+07 -	5.07E+09 -	2.21E+10 -	7.76E+06 -	1.07E+10	1.00E+10 \sim	1.88E + 10 -	5.76E + 10 -	1.13E+11 -	6.43E+10 -	1.95E+11 -	1.03E+15 -	1.01E+11 -
F4	6.90E + 02	1.82E + 04 -	1.09E+01 +	3.15E+04 -	2.52E+04 -	2.27E+04 -	9.12E+03 -	1.21E + 04 -	2.48E+04 -	3.71E + 04	9.63E+04 -	$3.85E+04 \sim$	1.32E + 05 -	1.26E + 05 -	1.29E+05 -	6.56E + 04 -	6.95E+04 -	1.17E + 05 -
F5	8.49E-03	1.43E+00 -	$1.15\text{E-}02\sim$	5.22E+00 -	1.82E + 02 -	0.00E+00 +	$1.73E{+}00 \sim$	9.17E-05 +	2.98E-01 —	1.95E+02	$2.10E+02 \sim$	5.69E + 02 -	7.27E + 02 -	8.92E+03 -	$9.42E+02 \sim$	$2.07\mathrm{E}{+}02 \sim$	1.87E-04 +	6.50E+02 -
F6	1.50E+01	$1.02\mathrm{E}{+}01 \sim$	$8.65\mathrm{E}{+00}\sim$	$1.35E{+}01 \sim$	5.25E+01 -	5.81E+00 \sim	8.41E+00 \sim	$7.46\mathrm{E}{+00}\sim$	$9.90\mathrm{E}{+}00 \sim$	1.37E+02	$1.28\mathrm{E}{+02} \sim$	$1.34\mathrm{E}{+02}\sim$	2.23E + 02 -	1.11E + 03 -	3.88E+01 +	4.37E + 01 +	1.43E+01 +	2.23E + 02 -
F7	1.26E+01	2.08E+01 -	3.83E + 00 +	4.08E+01 -	6.04E + 01 -	3.54E+01 -	7.41E+01 -	2.45E+02 -	3.67E+01 -	1.56E+02	1.30E + 02 +	1.29E + 02 +	1.94E + 02 -	2.78E + 02 -	2.29E+02 -	2.35E + 02 -	7.76E+03 -	2.37E+02 -
F8	2.06E+01	$2.06\mathrm{E}{+}01\sim$	$2.05E+01 \sim$	$2.06E+01 \sim$	$2.06\mathrm{E}{+}01\sim$	$2.06E+01 \sim$	$2.06\mathrm{E}{+}01\sim$	$2.06\mathrm{E}{+}01\sim$	$2.06E{+}01 \sim$	2.11E + 01	$2.11\mathrm{E}{+}01\sim$	2.11E+01 \sim	$2.11E+01 \sim$	$2.11\mathrm{E}{+01} \sim$	$2.11E+01 \sim$	$2.11\mathrm{E}{+01}\sim$	$2.11\mathrm{E}{+01} \sim$	$2.11\mathrm{E}{+}01 \sim$
F9	3.93E + 00	8.62E + 00 -	7.74E + 00 -	9.66E+00 -	9.53E+00 -	4.67E+00 -	$4.50\mathrm{E}{+00}\sim$	5.40E + 00 -	8.99E+00 -	3.11E + 01	4.00E + 01 -	4.09E+01 -	4.27E+01 -	4.19E+01 -	2.28E+01 +	2.56E + 01 +	$3.24E{+}01 \sim$	3.98E+01 -
F10	6.43E-01	5.73E+00 -	5.24 E-01 \sim	2.70E + 01 -	1.32E + 02 -	1.67E-01 +	8.62E-02 +	4.59E-01 +	3.46E + 00 -	1.52E+02	1.94E + 02 -	1.04E + 02 +	8.26E+02 -	2.57E + 03 -	$1.77E+02 \sim$	1.31E + 00 +	5.18E-02 +	8.63E+02 -
F11	6.16E + 00	2.61E + 01 -	2.25E+01 -	3.09E + 01 -	4.92E+01 -	1.49E+01 -	1.05E+01 -	2.99E+01 -	2.07E + 01 -	1.18E+02	2.04E + 02 -	2.25E + 02 -	2.18E + 02 -	3.99E + 02 -	$9.87E + 01 \sim$	1.50E + 02 -	2.68E + 02 -	2.17E+02 -
F12	1.83E + 01	4.30E+01 -	3.01E + 01 -	5.10E + 01 -	6.74E + 01 -	$2.34E+01 \sim$	$1.88\mathrm{E}{+01} \sim$	2.71E+01 -	4.73E+01 -	1.97E+02	2.46E + 02 -	2.27E + 02 -	2.73E + 02 -	4.50E + 02 -	1.23E+02 +	$1.85E+02 \sim$	$2.41\mathrm{E}{+}02 \sim$	2.93E + 02 -
F13	2.38E + 01	4.47E+01 -	3.20E + 01 -	4.86E+01 -	6.61E+01 -	3.42E+01 -	$2.38\mathrm{E}{+01}\sim$	4.80E + 01 -	4.63E + 01 -	2.65E+02	$2.47\mathrm{E}{+}02 \sim$	2.39E + 02 +	$2.77E + 02 \sim$	4.27E+02 -	2.18E + 02 +	2.34E + 02 +	$2.54\mathrm{E}{+}02 \sim$	2.93E + 02 -
F14	1.83E + 02	1.28E+03 -	1.18E + 03 -	1.39E + 03 -	1.32E + 03 -	7.76E+02 -	3.47E + 02 -	1.14E + 03 -	1.18E+03 -	3.75E + 03	6.81E + 03 -	7.73E+03 -	6.60E+03 -	6.56E+03 -	$4.04E+03 \sim$	$4.34E + 03 \sim$	4.48E + 03 -	6.13E+03 -
F15	1.08E + 03	1.77E + 03 -	1.64E + 03 -	1.91E+03 -	1.86E + 03 -	$1.21E+03 \sim$	1.15E+03 \sim	$1.31\mathrm{E}{+03}\sim$	1.85E + 03 -	7.04E+03	8.14E+03 -	8.27E+03 -	8.36E+03 -	8.43E+03 -	7.79E+03 -	$6.83\mathrm{E}{+03}\sim$	5.12E + 03 +	8.14E+03 -
F16	1.53E + 00	1.95E + 00 -	1.78E+00 -	$1.78\mathrm{E}{+00} \sim$	1.83E+00 -	1.80E+00 -	$1.58\mathrm{E}{+00} \sim$	1.20E+00 +	1.86E + 00 -	3.24E+00	$3.52E+00 \sim$	3.65E + 00 -	3.63E+00 -	3.74E + 00 -	$3.48E+00 \sim$	3.71E + 00 -	$3.13E+00 \sim$	3.68E+00 -
F17	2.00E + 01	3.93E+01 -	3.97E+01 -	4.05E+01 -	7.69E+01 -	$2.31E+01 \sim$	$2.27\mathrm{E}{+01} \sim$	2.46E+01 -	3.33E+01 -	2.00E+02	2.53E + 02 -	2.70E + 02 -	2.98E + 02 -	5.84E + 02 -	1.31E + 02 +	$1.76E + 02 \sim$	1.40E + 02 +	2.89E + 02 -
F18	3.80E + 01	5.57E+01 -	4.96E+01 -	5.87E + 01 -	8.92E+01 -	$3.57E+01 \sim$	$3.74\mathrm{E}{+01} \sim$	2.66E + 01 +	5.69E + 01 -	2.97E+02	$2.95E+02 \sim$	2.77E + 02 +	3.32E + 02 -	6.01E + 02 -	2.76E + 02 +	2.18E + 02 +	1.40E + 02 +	3.37E+02 -
F19	1.74E + 00	3.85E + 00 -	2.52E + 00 -	3.94E + 00 -	1.01E + 01 -	4.54E+00 -	8.43E+00 -	$1.84E + 00 \sim$	3.75E + 00 -	3.24E+01	$2.63E + 01 \sim$	2.37E + 01 +	1.06E + 02 -	4.05E + 04 -	1.99E+01 +	1.27E + 02 -	1.44E + 01 +	4.67E+02 -
F20	3.61E + 00	3.84E+00 -	$3.45E+00 \sim$	4.05E+00 -	4.10E + 00 -	$3.63E+00 \sim$	$3.75\mathrm{E}{+00} \sim$	4.04E + 00 -	4.08E+00 -	1.44E+01	1.49E+01 -	$1.43E+01 \sim$	1.48E + 01 -	1.48E + 01 -	1.38E + 01 +	$1.46E + 01 \sim$	1.48E+01 -	1.50E + 01 -
F21	3.81E + 02	4.00E + 02 -	4.00E + 02 -	4.00E+02 -	4.43E + 02 -	3.91E+02 -	4.17E + 02 -	$4.31\mathrm{E}{+}02 \sim$	$3.81\mathrm{E}{+}02 \sim$	6.47E + 02	$7.05E + 02 \sim$	8.23E+02 -	1.34E + 03 -	2.22E + 03 -	2.20E+03 -	2.38E + 03 -	3.59E + 03 -	1.38E + 03 -
F22	3.06E + 02	1.43E+03 -	1.45E + 03 -	1.30E + 03 -	1.45E + 03 -	8.79E+02 -	4.78E + 02 -	1.50E + 03 -	1.34E + 03 -	3.92E+03	7.37E+03 -	8.22E+03 -	7.52E+03 -	7.70E + 03 -	$4.55E+03 \sim$	5.46E + 03 -	5.27E + 03 -	6.87E+03 -
F23	1.44E + 03	1.97E + 03 -	1.77E + 03 -	2.09E + 03 -	2.06E + 03 -	$1.30E+03 \sim$	1.26E + 03 +	1.79E+03 -	1.93E + 03 -	7.58E + 03	8.82E+03 -	8.76E+03 -	8.87E+03 -	8.71E+03 -	$7.51E + 03 \sim$	$7.33E+03 \sim$	5.68E + 03 +	8.72E+03 -
F24	2.13E + 02	2.18E + 02 -	2.10E + 02 +	2.22E+02 -	2.24E + 02 -	$2.14E+02 \sim$	$2.14E + 02 \sim$	2.17E + 02 -	2.22E+02 -	2.79E+02	2.92E + 02 -	2.86E + 02 -	3.04E + 02 -	3.12E + 02 -	2.62E + 02 +	2.85E + 02 -	$2.82E + 02 \sim$	3.03E+02 -
F25	2.13E + 02	2.20E + 02 -	$2.11E + 02 \sim$	2.24E+02 -	2.23E + 02 -	$2.15E+02 \sim$	$2.14E + 02 \sim$	2.19E + 02 -	2.23E + 02 -	2.97E+02	3.13E + 02 -	3.11E + 02 -	3.19E + 02 -	3.23E + 02 -	2.79E + 02 +	3.04E + 02 -	$3.00E + 02 \sim$	3.16E + 02 -
F26	1.65E+02	$1.78\mathrm{E}{+02} \sim$	$1.94E+02 \sim$	2.01E+02 -	1.98E + 02 -	$1.85E+02 \sim$	$1.53E+02 \sim$	1.97E + 02 -	1.93E + 02 -	2.74E+02	$2.72E + 02 \sim$	$2.17E + 02 \sim$	3.50E + 02 -	$3.07E + 02 \sim$	$3.22E + 02 \sim$	$2.35E + 02 \sim$	$3.05E+02 \sim$	$2.52E + 02 \sim$
F27	4.23E + 02	4.87E+02 -	$4.44E + 02 \sim$	5.66E + 02 -	5.81E + 02 -	5.03E+02 -	$4.35E + 02 \sim$	5.16E+02 -	5.45E+02 -	1.04E + 03	1.26E + 03 -	1.23E + 03 -	1.36E + 03 -	1.37E + 03 -	8.88E+02 +	$9.96E + 02 \sim$	$1.07\mathrm{E}{+03} \sim$	1.32E + 03 -
F28	4.12E+02	$3.55E+02 \sim$	3.01E+02 +	$4.13E+02 \sim$	6.40E + 02 -	2.90E+02 +	7.21E+02 -	1.08E+03 -	$3.27\mathrm{E}{+}02 \sim$	1.34E+03	$1.14E+03 \sim$	$1.46E+03 \sim$	1.87E+03 -	2.93E+03 -	2.13E+03 -	3.07E+03 -	6.38E+03 -	2.08E+03 -
+/-/~		0/24/4	5/14/9	0/24/4	0/27/1	4/13/11	4/9/15	6/17/5	0/24/4	1	1/16/11	6/16/6	0/26/2	0/26/2	11/6/11	7/11/10	10/9/9	0/26/2
Ave. rank	2.45	5.59	3.62	7.41	8.23	3.46	3.59	4.88	5.77	3.18	4.84	4.57	6.88	8.04	3.43	3.79	3.86	6.43

Experiment: Results (Summary)

Usefulness of EBADE and Limitation of SAEA in M-EOPs ¹/₂

- EBADE keeps deriving the best performance after 6,000 FEs, i.e., M-EOPs
- > The ranks of SAEAs decreases as the increase of the number of FEs.
- Some adaptive DEs becomes effective as the increase of the number of FEs. (jSO and CSDE)

+/-/~ in Wilcoxon test + ∶ours underperforms - ∶ours outperforms ~ ∶cannot find significance

Experiment: Computational Time

Average runtime [sec] required to complete one trial (6,000 FEs)

- > The runtime of EBADE is slightly longer than those of adaptive DEs.
 - However, this is not cared in M-EOPs.
- > The runtime of EBADE is much faster than those of SAEAs.
 - These long runtime of SAEAs are not accepted in M-EOPs.

			Adaptiv	e DEs	SAEAs					
D	EBADE	SHADE	jSO	CSDE	EDEV	GPEME	S-JADE	SAHO	ESMDE	
10	1.42E + 01	1.18E + 01	6.95E + 00	1.35E + 01	1.58E + 01	3.30E + 03	1.04E + 05	4.13E + 04	2.98E + 03	
20	1.45E + 01	1.18E + 01	6.98E + 00	1.37E + 01	1.80E + 01	1.54E + 04	1.11E + 05	7.71E + 04	1.53E + 04	
30	1.55E + 01	1.21E + 01	7.23E + 00	1.44E + 01	1.68E + 01	3.34E + 04	7.72E + 04	8.65E + 04	3.67E + 04	

Discussion

Discussion 1/3

Impact of parameter adaptation in M-EOPs

- > EBADE is compared with DEs with fixed parameter configuration.
 - Eight variants ($\theta_F = 0.5, \theta_{CR} = 0.9$)

Conclusion

The effectiveness of parameter adaptation of EBADE is confirmed.

Discussion 2/3

19

 $+/-/\sim$ in Wilcoxon test

default setting underperforms
default setting outperforms

Parameter analysis for K (# of candidate Øs) and M (# of subpopulations)

> Ablation studies of the prior validation and multi-population can also be conducted.

Can be turned off by setting K = 1

Ditto by setting M = 100

Result

- The performance of EBADE is sensitive to *K* and *M*.
- The default setting outperforms or is competitive with the others.
- EBADE with K = 1 or M = 100 clearly underperform the others.

										\sim	: cann	ot find sig	nificance
		a) $D = 1$	10							a) $D = 10$)		
FEs	vs $K = 1$ (w/o PV)	vs $K = 2$	vs $K = 4$	vs $K = 8$	vs $K = 10$	FEs	vs $M = 2$	vs $M = 4$	vs $M = 5$	vs $M = 10$	vs $M = 20$	vs $M = 50$	vs $M = 100$ (Indiv.)
2,000	0/16/12	0/13/15	0/ 2/26	1/ 0/27	3/ 0/25	2,000	0/ 7/21	0/ 6/22	0/ 4/24	2/ 1/25	0/ 1/27	1/ 1/26	0/ 0/28
4,000	0/17/11	0/12/16	0/ 7/21	2/ 1/25	5/ 1/22	4,000	1/12/15	1/ 8/19	0/ 5/23	1/ 1/26	0/ 1/27	0/ 3/25	1/ 3/24
6,000	0/16/12	0/13/15	1/ 5/22	2/ 2/24	3/ 3/22	6,000	0/15/13	0/10/18	0/ 7/21	0/ 1/27	0/ 1/27	0/ 3/25	1/ 4/23
8,000	1/15/12	1/11/16	2/ 6/20	4/ 2/22	3/ 3/22	8,000	0/12/16	0/ 7/21	0/ 7/21	0/ 0/28	0/ 0/28	1/ 4/23	0/ 6/22
10,000	2/10/16	2/ 9/17	2/ 5/21	3/ 2/23	3/ 4/21	10,000	2/11/15	0/ 8/20	0/ 6/22	0/ 0/28	0/ 1/27	0/ 5/23	0/ 6/22
b) <i>D</i> = 20									b) $D = 20$)			
FEs	vs $K = 1$ (w/o PV)	vs $K = 2$	vs $K = 4$	vs $K = 8$	vs $K = 10$	FEs	vs $M = 2$	vs $M = 4$	vs $M = 5$	vs $M = 10$	vs $M = 20$	vs $M = 50$	vs $M = 100$ (Indiv.)
2,000	0/16/12	0/15/13	0/ 1/27	2/ 0/26	3/ 0/25	2,000	0/10/18	0/ 1/27	0/ 4/24	0/ 0/28	0/ 0/28	1/ 4/23	0/ 1/27
4,000	0/18/10	0/13/15	0/ 3/25	3/ 0/25	4/ 0/24	4,000	0/13/15	0/ 2/26	1/ 4/23	0/ 1/27	1/ 1/26	0/ 1/27	1/ 1/26
6,000	0/13/15	1/13/14	0/ 1/27	3/ 1/24	3/ 2/23	6,000	0/ 9/19	0/ 2/26	1/ 3/24	2/ 1/25	2/ 1/25	0/ 2/26	1/ 3/24
8,000	1/11/16	1/ 8/19	1/ 1/26	2/ 2/24	1/ 2/25	8,000	0/ 8/20	1/ 5/22	1/ 3/24	1/ 0/27	2/ 0/26	0/ 2/26	0/ 5/23
10,000	1/ 8/19	1/ 7/20	2/ 1/25	2/ 2/24	1/ 5/22	10,000	1/ 6/21	1/ 7/20	1/ 4/23	2/ 1/25	1/ 1/26	0/ 2/26	0/ 4/24
c) <i>D</i> = 30									c) $D = 30$)			
FEs	vs $K = 1$ (w/o PV)	vs $K = 2$	vs $K = 4$	vs $K = 8$	vs $K = 10$	FEs	vs M = 2	vs $M = 4$	vs M = 5	vs M = 10	vs M = 20	vs M = 50	vs M = 100 (Indiv.)
2,000	1/17/10	0/10/18	1/ 3/24	2/ 0/26	5/ 0/23	2.000	0/ 8/20	0/ 5/23	0/ 3/25	3/ 1/24	1/ 1/26	0/ 1/27	2/ 2/24
4,000	1/15/12	0/ 9/19	0/ 0/28	2/ 1/25	3/ 0/25	4,000	0/ 9/19	0/ 2/26	0/ 2/26	0/ 1/27	1/ 1/26	0/ 1/27	1/ 1/26
6,000	0/14/14	0/11/17	0/ 0/28	1/ 2/25	1/ 1/26	6,000	0/10/18	0/ 4/24	0/ 4/24	0/ 1/27	0/ 1/27	0/ 3/25	1/ 3/24
8,000	0/ 9/19	0/ 5/23	0/ 0/28	1/ 2/25	1/ 2/25	8,000	1/12/15	1/ 4/23	1/ 4/23	0/ 1/27	0/ 1/27	0/ 2/26	1/ 6/21
10,000	3/ 7/18	1/ 5/22	0/ 0/28	0/ 2/26	2/ 3/23	10,000	1/10/17	1/ 4/23	2/ 4/22	0/ 1/27	0/ 0/28	0/ 2/26	1/ 5/22

Conclusion The prior validation and multi-population mechanisms are necessary.

Discussion 3/3

Adaptation result

- The ratio of each candidate used
 - Shown by problem function and the dimension.
 - Result
 - All candidates for each configuration are selected avoiding strong bias.
 - Analysis example
 - CR prefers higher values.
 - Solutions generated by exploitation mutation strategies should be actively utilized in EOPs.
 - Exploitation-oriented mutation strategy (*best/1*) is most frequently selected in EOPs.

Conclusion EBADE exhibited high performance by selecting more candidates appropriate for EOPs.

Conclusion

Conclusion

Emulation-based Adaptive DE for M-EOPs

- EBADE emulates sample-efficient approaches like SAEAs.
 - Prior validation mechanism prescreens candidate configurations without FEs.
 - Multi-population mechanism validates candidate configurations with respect to multiple samples.

> High performance, Fast, and Auto-tunable

- Outperforming adaptive DEs and highly competitive with SAEAs.
- Much shorter runtime than those of SAEAs.
- Automatic performance improvement and easy-to-use

Future Work

- Extension to multi-objective EOPs
- > Development of solution screening mechanism without using any ML technique.

References

[Shan+ 10]	S. Shan and G. G. Wang, "Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions," Struct. Multidiscip. Optim., vol. 41, no. 2, pp. 219–241, Mar. 2010.
[Deng+ 22]	W. Deng, H. Ni, Y. Liu, H. Chen, and H. Zhao, "An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation," Appl. Soft Comput., vol. 127, p. 109419, Sep. 2022.
[Makumbura+ 22]	R. K. Makumbura, M. B. Gunathilake, J. T. Samarasinghe, R. Confesor, N. Muttil, and U. Rathnayake, "Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed," Hydrology, vol. 9, no. 10, p. 183, Oct. 2022.
[Oyama+ 17]	A. Oyama, T. Kohira, H. Kemmotsu, T. Tatsukawa, and T. Watanabe, "Simultaneous structure design optimization of multiple car models using the K computer," in IEEE Symp. Ser. Comput. Intell. (SSCI), Nov. 2017, pp. 1–4.
[Jones+98]	D. R. Jones, M. Schonlau, and W. J. Welch, "Efficient global optimization of expensive black-box functions," J. Global Optimiz., vol. 13, no. 4, pp. 455–492, 1998.
[Sun+ 15]	C. Sun, Y. Jin, J. Zeng, and Y. Yu, "A two-layer surrogate-assisted particle swarm optimization algorithm," Soft Computing, vol. 19, no. 6, pp. 1461–1475, Jun. 2015.
[Briffoteaux 22]	G. Briffoteaux, "Parallel surrogate-based algorithms for solving expensive optimization problems," Ph.D., University of Lille, 2022. [Online]. Available: https://hal.science/tel-03853862/
[Lobo+ 07]	F. J. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in Evolutionary Algorithms. Berlin, Heidelberg: Springer Science & Business Media, 2007.
[Storn+ 97]	R. Storn and K. Price, "Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces," J. Global Optimiz., vol. 11, pp. 341–359, 1997.
[Cai+ 13]	Cai, Y., Wang, J.: Differential evolution with neighborhood and direction information for numerical optimization. IEEE Trans. Cybern. 43(6), 2202–2215(2013)
[Tanabe+ 13]	Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for Differential Evolution. In: IEEE Congr. Evol. Comput. (CEC), pp. 7178 (2013)
[Brest+ 17]	J. Brest, M. S. Maučec, and B. Bošković, "Single objective real-parameter optimization: Algorithm jSO," in IEEE Congr. Evol. Comput. (CEC), Jun. 2017, pp. 1311–1318.
[Wu+ 18]	G. Wu, X. Shen, H. Li, H. Chen, A. Lin, and P. N. Suganthan, "Ensemble of differential evolution variants," Inf. Sci., vol. 423, pp. 172–186, Jan. 2018.
[Sun+ 20]	Sun, G., Yang, B., Yang, Z., Xu, G.: An adaptive differential evolution with combined strategy for global numerical optimization. Soft Comput. 24(9), 62776296 (2020)
[Liu+ 14]	Liu, B., Zhang, Q., Gielen, G.G.E.: A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems. IEEE Trans. Evol. Comput. 18(2), 180-192 (2014)
[Cai+ 19]	X. Cai, L. Gao, X. Li, and H. Qiu, "Surrogate-guided differential evolution algorithm for high dimensional expensive problems," Swarm Evol. Comput., vol. 48, pp. 288–311, Aug. 2019.
[Pan+ 21]	JS. Pan, N. Liu, SC. Chu, and T. Lai, "An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems," Inf. Sci., vol. 561, pp. 304–325, Jun. 2021.
[Mallipeddi+ 15]	Mallipeddi, R., Lee, M.: An evolving surrogate model-based differential evolution algorithm. Appl. Soft Comput. 34, 770-787 (2015)