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Abstract—Existing works have reported that adaptive dif-
ferential evolution algorithms, i.e., adaptive DEs, improve the
MOEA/D-DE algorithm, but this result is limited to small-
scale multi-objective optimization problems. This paper compares
four popular adaptive DEs on the MOEA/D-DE framework to
evaluate their scalability to the number of decision variables
and objectives. Specifically, we employ jDE, JADE, EPSDE,
and SaDE in this paper. Our experimental results provide the
following novel observations. MOEA/D-DE with JADE derives
the best average rank on small-scale problems. However, the
performances of MOEA/D-DE with JADE, EPSDE, and SaDE
gradually degrade with the increase of the problem scale. In
contrast, jDE stably improves the performance of MOEA/D-DE
on large-scale problems employed in this paper (i.e., 11 objectives
and 100 decision variables). Thus, we find a critical tradeoff
among adaptive DEs in terms of the scalability of the MOEA/D-
DE framework; a statistical adaption like JADE is suitable for
small-scale problems, but a randomization adaptation like jDE
is effective with the increase of the problem scale. Our results
also suggest that parameter-only adaptation can be suitable for
MOEA/D-DE regardless of the problem scale.

Index Terms—algorithmic configuration adaptation, MOEA/D-
DE, many-objective optimization

I. INTRODUCTION

Although a large number of multi-objective evolutionary
algorithms (MOEAs) have been proposed in the literature [1],
[2], we often suffer to decide their algorithmic configurations
suitable for solving a given problem [3]. The performances of
evolutionary algorithms, including MOEAs, highly depend on
their algorithmic configurations, e.g., hyper-parameter settings
and genetic operators [4], [5]. Consequently, adaptation meth-
ods of algorithmic configurations can be a proper approach
to improve the performances [6], [7]. The adaptation methods
have been mainly studied in single-objective evolutionary al-
gorithms, especially in differential evolution algorithms (DEs)
[8], e.g., LSHADE-Epsin [9] and jSO [10].

In MOEAs, MOEA/D-DE [11] has been frequently em-
ployed as a basis of the adaptation methods. Specifically,
existing methods, i.e., adaptive MOEA/D-DEs, adapt the DE
parameters and/or the DE genetic operators both implemented
in MOEA/D-DE. For instance, in [12], the scaling factor F and

TABLE I
CLASSIFICATION OF FOUR ADAPTIVE DES EMPLOYED IN THIS PAPER

F CR mutation strategy
jDE [13] randomization randomization –

JADE [16] statistical statistical –
EPSDE [20] randomization randomization randomization

SaDE [21] statistical statistical statistical

the crossover rate CR are adapted based on two popular adap-
tive DEs: jDE [13] and SHADE [14]. In [15], the parameter-
adaptation method of F is customized for MOEA/D-DE based
on jDE, JADE [16], and MDE pBX [17]. The mutation
strategy is also adapted in MOEA/D-FRRMAB [18] and
ADEMO/D [5]. MOEA/D-CDE [19] adapts both the mutation
strategy and F . Those three specific algorithms employ the
credit assignment strategy to adapt the configurations.

However, there is a lack of fundamental insights to develop
adaptation methods for multi-objective optimization problems
(MOPs) compared to single-objective optimization problems
(SOPs). Specifically, the following issues remain unclear:

• The scalability of adaptive MOEA/D-DEs to the number
of decision variables, objectives, and configurations to be
adapted is not investigated. The most of existing adaptive
MOEA/D-DEs have been tested on small-scale problems
with the number of decision variables D ≤ 30 and the
number of objectives M ≤ 3. Besides, existing works have
not intensively compared adaptive MOEA/D-DEs in terms
of the number of algorithmic configurations to be adapted.

• Adaptation strategies employed in adaptive DEs can be
roughly classified into randomization adaptation (e.g., jDE
and EPSDE [20]) and statistical adaptation (e.g., JADE
and SaDE [21]) [15]. Many literature have reported that
the statistical adaptation derives superior performance in
SOPs [14], [16]. However, such a tendency has not yet been
observed in MOPs due to the lack of comparative studies.
In both [15] and [12], adaptation strategies were compared,
but no clear superiority was observed.

Note that the randomization adaptation indicates that algorith-
mic configurations are randomly generated regardless of adap-
tation results during the run, while the statistical adaptation
utilizes the adaptation results to sample new configurations978-1-7281-8393-0/21/$31.00 ©2021 IEEE



using statistical distributions.
Thus, this paper conducts an intensive comparison of the

following four popular adaptive DEs on the MOEA/D-DE
framework; jDE, JADE, EPSDE, and SaDE. These adaptive
DEs are basic algorithms often used in comparative studies for
SOPs [22], [23]. TABLE I summarizes a rough classification
of the four adaptive DEs employed in this paper. Note that
SaDE is conceptually designed to adapt both the mutation
and crossover strategies, but it virtually uses the binomial
crossover as implemented in this paper. Note also that some
adaptive DEs, e.g., CoDE [24] and DE-CAT [25], adapt
both the mutation and crossover strategies in SOPs, but only
mutation strategy is typically controlled in existing adaptive
MOEA/D-DEs. We also set different scale problems with
D = {20, 50, 100} and M = {3, 7, 11}.

This paper is organized as follows. Section II briefly intro-
duces adaptive MOEA/D-DEs with jDE, JADE, EPSDE, and
SaDE, denoted as MOEA/D-jDE, MOEA/D-JADE, MOEA/D-
EPSDE, and MOEA/D-SaDE, respectively. In Section III,
we test those four adaptive MOEA/D-DEs on DTLZ [26]
and WFG [27] benchmark problems with different problem
settings. We also demonstrate adaptation results to analyze
our experimental results. Finally, Section IV gives a summary
of this paper with future work.

II. MOEA/D-DE AND ITS ADAPTATION

This section introduces a generalized framework of the
adaptive MOEA/D-DE. Then, the detail frameworks of the
four adaptive MOEA/D-DEs are described.

As a basic introduction, MOEA/D-DE is a population-
based optimization algorithm, where a population P con-
sists of N individuals xi = [xi,1, xi,2, . . . , xi,D], i ∈
{1, 2, . . . , N}; xui,j and xli,j are the upper and lower val-
ues of xi,j , respectively. An MOP with M objective func-
tions f1(x), f2(x), . . . , fM (x) is decomposed into N single-
objective sub-problems; each i-th sub-problem is paired with
a scalarization function g(x|λi). Specifically, a weight vector
is defined as λi = [λi,1, . . . , λi,M ]T with the condition∑M
j=1 λi,j = 1, and we use the Tchebycheff function as the

scalarization function to be minimized [11], [28], given by;

g(xi|λi, z∗) = max
j∈{1,2,...,M}

{λj |fj(xi)− z∗j |}, (1)

where z∗ denotes a set of ideal reference points used to deter-
mine the search direction; and xi is the individual assigned to
i-th sub-problem. In this paper, we use a provisional minimum
value as the reference point z; i.e., zj = min

x∈P
{fj(x)},

j ∈ {1, 2, . . . ,M}.

A. Generalized framework of adaptive MOEA/D-DE

Algorithm 1 shows a generalized framework of the adaptive
MOEA/D-DE employed in this paper. Note that jDE, JADE,
EPSDE, and SaDE can be classified to an individual-based
adaptation method, that is, each individual xi is paired with
its own algorithmic configuration. This paper describes an
algorithmic configuration for xi as θi = [θv,i, θF,i, θCR,i];

Algorithm 1 Generalized framework of adaptive MOEA/D-
DE

1: t = 0
2: Initialize P = {x1,x2, . . . ,xN}
3: Initialize Θ = {θ1,θ2, . . . ,θN} (θi = [θv,i, θF,i, θCR,i])
4: for i = 1 to N do
5: Get neighborhood indices list Bi = {b1, b2, . . . , bT }
6: for j = 1 to M do
7: Calculate zj = min

x∈P
{fj(x)}

8: while termination criteria are not met do
9: t = t+ 1

10: for i = 1 to N do

11: Get indices list Li =

{
Bi if rand[0, 1] ≤ δ
{1, 2, . . . , N} otherwise

12: θt−1
i = θi

13: θi ← Sample(θt−1
i )

14: vi ← DE-Mutation(P, θv,i, θF,i)
15: ui ← DE-Crossover(xi,vi, θCR,i)
16: ui ← Polynomial-Mutation(ui, pm, η)
17: for j = 1 to M do
18: Update zj = min{zj , fj(ui)}
19: ct = 0
20: while ct < nr and Li 6= ∅ do
21: j ← Select an index randomly from Li, Li = Li\{j}
22: if g(ui|λj ,z) ≤ g(xj |λj ,z) then
23: xj = ui, ct = ct+ 1
24: θi ← Update(θi,θt−1

i )

θv,i is a categorical variable, which indicates an index of
predefined mutation strategies; θF,i and θCR,i are real-value
variables, which indicate settings of F and CR, respectively.
All algorithmic configurations are contained in a configuration
set Θ. Note that θv,i is always set to 1 as the default value if we
do not adapt the mutation strategy. For instance, we can set and
fix θi to [1, 0.5, 1.0],∀i ∈ {1, 2, . . . , N} for (non-adaptive)
MOEA/D-DE [11], where θv,i = 1 indicates the current/1
mutation strategy; vi = xi + θF,i(xr1 − xr2), where xr1 and
xr2 are mutually exclusive individuals randomly selected from
the current population P and vi is a mutant individual. Thus,
adaptive MOEA/D-DEs control θi during the run.

As the initialization process, the adaptive MOEA/D-DE
defines N single-objective sub-problems with Eq. (1), and
it generates N initial individuals xi ∈ P . In addition, all
N algorithmic configurations θi ∈ Θ are also initialized
according to the default settings of an employed adaptive DE.
As in the MOEA/D framework, a neighborhood indices list
Bi = {b1, b2, . . . , bT } is prepared, where each b denotes the
index of a sub-problem and T is a hyper-parameter.

Next, for each sub-problem, the adaptive MOEA/D-DE
chooses an indices list Li to be used in the updating process
(lines 20-24, Algorithm 1). Specifically, Li is set to the
neighborhood Bi of i-th sub-problem with the probability
δ; otherwise Li is set to a set of all possible indices, i.e.,
{1, 2, . . . , N}. Next, the adaptive MOEA/D-DE stores the
current configuration θi as θt−1i , and then it newly samples
θi with the defined adaptation method, denoted by a pseudo
function Sample(θt−1i ). Then, it generates a new individual ui
based on the DE procedures with θi; a mutant individual vi is



generated by the θv,i-th mutation strategy with a scaling factor
θF,i and then a trial individual ui is generated by applying a
DE crossover strategy to ui and xi with the crossover rate
θCR,i, and subsequently the polynomial mutation is further
applied to ui as;

ui,j =

{
ui,j + σk(xui,j − xli,j) if rand[0, 1] ≤ pm,
ui,j otherwise,

(2)

σk =

{
(2rand[0, 1])

1
η+1 − 1 if rand[0, 1] ≤ 0.5,

1− (2− 2rand[0, 1])
1
η+1 otherwise,

(3)

where pm and η are the mutation probability and the dis-
tribution index, respectively. Note that we use the binomial
crossover frequently used in MOEA/D-DE variants [5], [12],
[15], [19], [29], given by;

ui,j =

{
vi,j if rand[0, 1] ≤ θCR,i or j = jrand,
xi,j otherwise,

(4)

where jrand ∈ [1, D] is an integer randomly sampled from
uniform distribution.

After ui is generated, the adaptive MOEA/D-DE calculates
the fitness values of ui and then it updates the reference point
z. At the end of generation process (lines 20-24), the adaptive
MOEA/D-DE replaces xj ∈ P with ui using an index j
randomly selected from Li, if ui improves j-th sub-problem
g(|λj , z). Note that θi may be further updated with a pseudo
function Update(θi,θt−1i ) dependent on the detail framework
of the adaptive DEs. For instance, θi is replaced with θt−1i if
ui does not improve any individual x on jDE.

In short, our generalized framework of the adaptive
MOEA/D-DE adds two new pseudo functions Sample(θt−1i )
and Update(θi,θt−1i ) to the MOEA/D-DE framework.

B. Detail framework of the four adaptive MOEA/D-DEs

TABLE II summarizes the initialization of θi and the
two pseudo functions Sample(θt−1i ) and Update(θi,θt−1i ) em-
ployed in MOEA/D-jDE, MOEA/D-JADE, MOEA/D-EPSDE,
and MOEA/D-SaDE, respectively. Note that we do not use
the best individual-based mutation strategies (e.g., best/1 and
current-to-pbest/1) since these strategies cannot be plausibly
defined in MOPs. Thus, MOEA/D-JADE employs the cur-
rent/1 mutation strategy instead of current-to-pbest/1. In addi-
tion, MOEA/D-jDE also employs current/1 (instead of rand/1)
to investigate a pure impact of the jDE’s adaptation algorithm
compared to JADE. In the similar manner, different from the
original frameworks of EPSDE and SaDE, our MOEA/D-
EPSDE and MOEA/D-SaDE use current/1 and rand/1 as
candidates of the mutation strategy.

1) MOEA/D-jDE: jDE adapts only hyper-parameters F
and CR by the randomization adaptation. This paper adopts
current/1 mutation strategy. Specifically, θF,i and θCR,i for an

individual xi are randomly re-sampled with the probabilities
τF and τCR, respectively;

θF,i =

{
rand[0.1, 1] if rand[0, 1] ≤ τF ,
θt−1F,i otherwise,

(5)

θCR,i =

{
rand[0, 1] if rand[0, 1] ≤ τCR,
θt−1CR,i otherwise.

(6)

Note that for SOPs, jDE resets θi to θt−1i if f(ui) > f(xi). In
the adaptive MOEA/D-DE framework, we reset θi to θt−1i if
no individual is updated with ui (in lines 20-24, Algorithm 1).
Technically, Update(θi,θt−1i ) is designed to replace θi with
θt−1i if ct = 0.

2) MOEA/D-JADE: JADE adapts only hyper-parameters F
and CR by the statistical adaptation. Again, the original JADE
framework (for SOPs) uses the current-to-pbest/1 mutation
strategy; however, this paper uses the current/1 mutation
strategy. In the JADE framework, two meta-parameters µF and
µCR are defined to specify the Cauchy distribution C(µF , 0.1)
and the normal distributionN (µCR, 0.1) for sampling θF,i and
θCR,i, respectively. Those two meta-parameters are updated as
follows;

µF = (1− c)µF + c ·meanL(SF ), (7)
µCR = (1− c)µCR + c ·mean(SCR), (8)

where c ∈ [0, 1] is the learning rate; SF and SCR denote sets of
θF,i and θCR,i which have succeeded in updating the individ-
ual in a generation, respectively. Here, mean(SCR) calculates
the mean of all values stored in SCR; and meanL(SF ) returns
the second-order Lehmer mean of all values stored SF , i.e.,(∑

θF,i∈SF θ
2
F,i/

∑
θF,i∈SF θF,i

)
.

3) MOEA/D-EPSDE: EPSDE adapts the mutation strat-
egy in addition to F and CR by the randomization
adaptation. EPSDE defines candidates of configurations as;
PF = {0.4, 0.5, · · · , 0.9}, PCR = {0.1, 0.2, · · · , 0.9}, Pv =
{current/1, rand/1}. The rand/1 mutation strategy can be
denoted as vi = xr1 + θF,i(xr2 − xr3), where xr3 is also
a mutually exclusive and randomly sampled individual. Note
that the original EPSDE prepares best/2 as a candidate of
the mutation strategy. At the initializing process, θF,i, θCR,i,
and θv,i for i-th individual are randomly selected from the
predefined candidates. Then, EPSDE updates θF,i, θCR,i, and
θv,i by randomly selecting the candidates if f(ui) > f(xi).

4) MOEA/D-SaDE: SaDE adapts the mutation strategy, F ,
and CR by the statistical adaptation. In SaDE, θF,i is always
sampled from N (0.5, 0.3); θCR,i and the mutation strategy
θv,i are updated based on a success history information of
the individual updates in past LP generations. Note that
the original SaDE framework adapts both the mutation and
crossover strategies, but this paper adapts only the mutation
strategy to investigate a pure impact of the SaDE’s statistical
adaptation compared to the EPSDE’s randomization adap-
tation. In particular, our MOEA/D-SaDE defines current/1



TABLE II
SUMMARY OF INITIALIZATION, Sample(θt−1

i ), AND Update(θi,θt−1
i ) EMPLOYED IN MOEA/D-JDE, MOEA/D-JADE, MOEA/D-EPSDE, AND

MOEA/D-SADE

Method Initialization of θi = [θv,i, θF,i, θCR,i] ∈ Θ Sample(θt−1
i ) Update(θi,θt−1

i )
(line 3 in Algorithm 1) (line 13 in Algorithm 1) (line 24 in Algorithm 1)

θv,i = 1 (current/1) θv,i = 1 (current/1) θv,i = 1 (current/1)
jDE θF,i = 0.5 θF,i = Eq. (5) θF,i = θt−1

F,i (if failed in individual update)
θCR,i = 1.0 θCR,i = Eq. (6) θCR,i = θt−1

CR,i (if failed in individual update)
θv,i = 1 (current/1) θv,i = 1 (current/1)

JADE µF = 0.5 θF,i = C(µF , 0.1) –
µCR = 0.5 θCR,i = N (µCR, 0.1)
θv,i: randomly select from Pv = {current/1, rand/1} θv,i: re-sample (if failed in individual update)

EPSDE θF,i: randomly select from PF of original EPSDE – θF,i: re-sample (if failed in individual update)
θCR,i: randomly select from PCR of original EPSDE θCR,i: re-sample (if failed in individual update)
θv,i: randomly select from {current/1, rand/1} θv,i: select with

SaDE (thus k ∈ {1, 2},K = 2) probability pk in Eq. (9) –
θF,i = N (0.5, 0.3)

CRmk = 0.5 θCR,i = N (CRmk, 0.1)

and rand/1 as candidates of the mutation strategy. Then, the
selection probability for k-th candidate is calculated as;

pk,t =
Sk,t∑K
k=1 Sk,t

, (9)

Sk,t =

∑t−1
g=t−LP nsk,g∑t−1

g=t−LP nsk,g +
∑t−1
g=t−LP nfk,g

+ ε, (10)

where nsk,t and nfk,t are the number of success and failure
updates at generation t, respectively; ε is set to a constant value
to avoid zero division. For θCR,i, the values of successful
individual updates in the past LP generations are stored in
CRMemoryk for each strategy, and new θCR,i is sampled
from the normal distribution N (CRmk, 0.1) with standard
deviation of 0.1 and mean CRmk, the median value of
CRMemoryk.

III. COMPARISON

This section evaluates the scalability of the following five al-
gorithms to the number of decision variables D and objectives
M ; MOEA/D-DE as a baseline, MOEA/D-jDE, MOEA/D-
JADE, MOEA/D-EPSDE, and MOEA/D-SaDE.

A. Experimental design

We use DTLZ 1-7 [26] and WFG 1-9 [27] benchmark
problems with D = {20, 50, 100} and M = {3, 7, 11}. Thus,
144 experimental cases are conducted. For the WFG problems,
the number of position variables k is set to k = M − 1; and
the number of distance variables l is set to l = D − k [27].

Specific parameter settings of the four adaptive MOEA/D-
DEs are summarized in TABLE II except for the following
settings; τF = τCR = 0.1 for MOEA/D-jDE [13], c = 0.1 for
MOEA/D-JADE [16], and ε = 0.01 for MOEA/D-SaDE [21].
As common parameter settings, we use pm = 1/D, η = 20,
nr = 2, and δ = 0.9 [11]. In addition, we set N = {91, 91, 77}
and T = {10, 10, 8} both for M = {3, 7, 11}, where
T = ceil(N/10). Note that N is determined with the two-
layered approach [30], i.e., (H1, H2) = {(12, 0), (3, 1), (2, 1)}
for M = {3, 7, 11} in this paper. The maximum number of

fitness evaluations is strictly set to 100, 000, i.e., we forcedly
termimate each run when the number of fitness evaluations
reaches 100, 000.

We use the inverted generational distance (IGD) [31] with
10, 000 reference points to evaluate the performances of the
algorithms. IGD values at the maximum number of fitness
evaluations are reported as average values of 30 independent
runs.In this paper, we do not use hypervolume (HV) [32]
because the computation time to calculate HV increases expo-
nentially with M [33]. All experiments are conducted on the
PlatEMO software [34].

B. Result

TABLE III shows the IGD values of the five algorithms with
different problem dimensions for M = {3, 7, 11}, respectively.
Note that the best and worst values are highlighted with green
(and bold) and pink, respectively. Figs. 1 and 2 summarize the
average ranks of the five algorithms for D = {20, 50, 100} and
M = {3, 7, 11}, respectively.

As shown in the figures, for M = 3, the four adaptive
MOEA/D-DEs outperform MOEA/D-DE on small-scale prob-
lems with D = 20,M = 3. This tendency is consistent
with the existing works [5], [12], [15], [18], [19]; and all the
adaptive MOEA/D-DEs outperform MOEA/D-DE even when
D is further increasing to 50 and 100. However, as a general
trend, the difference of average ranks between MOEA/D-DE
and each adaptive MOEA/D-DE except for MOEA/D-jDE
gradually becomes smaller with the increase of D and M . In
terms of the differences among the adaptive MOEA/D-DEs,
MOEA/D-JADE derives the best average ranks for D ≤ 50
and M ≤ 7; however, its average ranks clearly degrade when
D and M are further increasing to 100 and 11, respectively.
In contrast, the average rank of MOEA/D-jDE gradually
improves with the increase of the D and M . MOEA/D-EPSDE
and MOEA/D-SaDE never derive the best average rank.

Thus, our experiments show that the parameter-only adap-
tation like jDE and JADE contributes to boost the perfor-
mance of MOEA/D-DE; the statistical adaptation like JADE
effectively outperforms the randomization adaptation like jDE



TABLE III
THE IGD VALUES OF THE FIVE ALGORITHMS WITH D = {20, 50, 100} FOR M = 3 (TOP), 7 (CENTER), 11 (BOTTOM); MOEA/D-DE, MOEA/D-JDE,
MOEA/D-JADE, MOEA/D-EPSDE, AND MOEA/D-SADE ARE BRIEFLY DENOTED AS -DE, -JDE, -JADE, -EPSDE, AND -SADE, RESPECTIVELY.

THE BEST AND WORST VALUES ARE HIGHLIGHTED WITH GREEN (AND BOLD) AND PINK, RESPECTIVELY.

a) M = 3

D = 20 D = 50 D = 100
-DE -jDE -JADE -EPSDE -SaDE -DE -jDE -JADE -EPSDE -SaDE -DE -jDE -JADE -EPSDE -SaDE

DTLZ1 9.73E+00 5.71E-01 5.09E-02 8.45E+00 2.57E+00 4.06E+01 4.64E+01 2.16E+01 1.36E+02 1.07E+02 1.54E+02 1.57E+02 2.19E+02 3.63E+02 3.74E+02
DTLZ2 7.53E-02 7.54E-02 7.52E-02 7.55E-02 7.53E-02 7.73E-02 7.54E-02 7.46E-02 7.52E-02 7.53E-02 9.95E-02 7.54E-02 7.53E-02 7.54E-02 7.55E-02
DTLZ3 9.90E+00 3.27E-01 1.11E-01 7.86E+00 3.41E+00 1.67E+02 9.44E+01 4.26E+01 3.98E+02 2.60E+02 4.33E+02 4.53E+02 5.23E+02 1.10E+03 9.98E+02
DTLZ4 1.49E-01 7.57E-02 7.47E-02 7.57E-02 7.55E-02 1.75E-01 7.60E-02 7.59E-02 7.59E-02 7.59E-02 1.97E-01 7.71E-02 7.91E-02 7.74E-02 7.72E-02
DTLZ5 1.45E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.69E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 3.66E-02 1.47E-02 1.50E-02 1.49E-02 1.48E-02
DTLZ6 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02
DTLZ7 2.02E-01 2.27E-01 1.99E-01 2.03E-01 2.27E-01 2.15E-01 2.23E-01 2.05E-01 2.10E-01 2.11E-01 3.89E-01 2.11E-01 2.06E-01 2.05E-01 2.05E-01
WFG1 1.42E+00 5.53E-01 5.16E-01 6.53E-01 5.04E-01 1.53E+00 1.03E+00 9.08E-01 1.17E+00 9.36E-01 1.54E+00 1.32E+00 1.25E+00 1.39E+00 1.26E+00
WFG2 3.22E-01 3.02E-01 3.04E-01 2.95E-01 3.02E-01 3.62E-01 3.04E-01 3.14E-01 3.00E-01 3.11E-01 4.03E-01 3.12E-01 3.28E-01 3.09E-01 3.22E-01
WFG3 1.90E-01 1.09E-01 1.13E-01 1.09E-01 1.11E-01 3.69E-01 1.53E-01 1.65E-01 1.47E-01 1.52E-01 4.41E-01 2.23E-01 2.48E-01 2.40E-01 2.31E-01
WFG4 3.86E-01 3.56E-01 3.52E-01 3.59E-01 3.54E-01 4.06E-01 3.65E-01 3.58E-01 3.71E-01 3.62E-01 4.22E-01 3.75E-01 3.64E-01 3.80E-01 3.68E-01
WFG5 3.53E-01 3.50E-01 3.44E-01 3.51E-01 3.47E-01 3.50E-01 3.48E-01 3.41E-01 3.50E-01 3.45E-01 3.53E-01 3.48E-01 3.42E-01 3.48E-01 3.43E-01
WFG6 3.88E-01 3.91E-01 3.90E-01 3.93E-01 3.84E-01 3.61E-01 3.61E-01 3.60E-01 3.62E-01 3.61E-01 3.56E-01 3.57E-01 3.55E-01 3.57E-01 3.54E-01
WFG7 3.61E-01 3.57E-01 3.57E-01 3.56E-01 3.59E-01 3.77E-01 3.58E-01 3.59E-01 3.58E-01 3.59E-01 4.29E-01 3.59E-01 3.60E-01 3.59E-01 3.61E-01
WFG8 4.00E-01 3.71E-01 3.72E-01 3.73E-01 3.73E-01 4.50E-01 3.79E-01 3.78E-01 3.79E-01 3.78E-01 4.95E-01 3.92E-01 3.86E-01 3.94E-01 3.89E-01
WFG9 3.56E-01 3.64E-01 3.63E-01 3.72E-01 3.67E-01 3.45E-01 3.55E-01 3.50E-01 3.48E-01 3.54E-01 3.41E-01 3.51E-01 3.45E-01 3.43E-01 3.52E-01

b) M = 7

D = 20 D = 50 D = 100
-DE -jDE -JADE -EPSDE -SaDE -DE -jDE -JADE -EPSDE -SaDE -DE -jDE -JADE -EPSDE -SaDE

DTLZ1 5.05E+00 1.11E+00 1.76E-01 7.34E+00 2.39E+00 5.05E+01 6.41E+01 5.72E+01 1.31E+02 1.01E+02 1.54E+02 2.51E+02 2.79E+02 3.88E+02 3.20E+02
DTLZ2 5.84E-01 5.21E-01 5.21E-01 5.19E-01 5.22E-01 7.25E-01 5.36E-01 5.23E-01 5.31E-01 5.24E-01 8.71E-01 5.40E-01 5.36E-01 5.53E-01 5.43E-01
DTLZ3 1.23E+01 7.74E-01 5.19E-01 1.53E+01 1.84E+00 1.62E+02 1.58E+02 1.50E+02 4.01E+02 3.24E+02 4.54E+02 7.84E+02 1.04E+03 1.21E+03 1.14E+03
DTLZ4 6.14E-01 5.24E-01 5.18E-01 5.22E-01 5.23E-01 7.14E-01 5.87E-01 5.35E-01 5.82E-01 5.51E-01 8.06E-01 6.82E-01 5.76E-01 6.29E-01 6.38E-01
DTLZ5 5.27E-02 5.25E-02 5.24E-02 5.28E-02 5.30E-02 6.45E-02 5.25E-02 5.23E-02 5.20E-02 5.25E-02 8.63E-02 5.26E-02 5.45E-02 5.25E-02 5.33E-02
DTLZ6 5.23E-02 5.22E-02 5.22E-02 5.22E-02 5.22E-02 5.25E-02 5.23E-02 5.23E-02 5.25E-02 5.24E-02 5.28E-02 5.24E-02 5.26E-02 5.24E-02 5.24E-02
DTLZ7 1.02E+00 1.35E+00 1.42E+00 1.28E+00 1.31E+00 1.24E+00 1.24E+00 1.41E+00 1.05E+00 1.17E+00 3.61E+00 9.37E-01 1.31E+00 8.84E-01 9.51E-01
WFG1 1.82E+00 1.40E+00 1.40E+00 1.51E+00 1.44E+00 2.30E+00 1.99E+00 2.00E+00 2.00E+00 1.99E+00 2.58E+00 2.13E+00 2.21E+00 2.09E+00 2.21E+00
WFG2 1.61E+00 1.42E+00 1.39E+00 1.44E+00 1.43E+00 1.59E+00 1.65E+00 1.69E+00 1.70E+00 1.68E+00 1.68E+00 1.62E+00 1.70E+00 1.68E+00 1.67E+00
WFG3 2.29E+00 2.22E+00 2.23E+00 2.25E+00 2.23E+00 2.16E+00 2.29E+00 2.28E+00 2.30E+00 2.34E+00 2.23E+00 2.23E+00 2.30E+00 2.25E+00 2.32E+00
WFG4 4.66E+00 4.13E+00 4.38E+00 4.00E+00 4.34E+00 4.82E+00 4.60E+00 4.49E+00 4.46E+00 4.49E+00 4.90E+00 4.77E+00 4.83E+00 4.86E+00 4.72E+00
WFG5 4.20E+00 4.17E+00 4.02E+00 4.04E+00 4.17E+00 4.29E+00 4.16E+00 4.17E+00 4.18E+00 4.36E+00 4.36E+00 4.15E+00 4.22E+00 4.23E+00 4.41E+00
WFG6 4.71E+00 4.93E+00 4.95E+00 4.94E+00 4.87E+00 4.77E+00 4.89E+00 4.95E+00 4.93E+00 4.87E+00 4.73E+00 4.88E+00 4.96E+00 4.90E+00 4.78E+00
WFG7 4.48E+00 4.85E+00 4.79E+00 4.86E+00 4.82E+00 4.86E+00 4.52E+00 4.51E+00 4.42E+00 4.39E+00 4.76E+00 4.68E+00 4.82E+00 4.67E+00 4.64E+00
WFG8 4.89E+00 4.83E+00 4.73E+00 4.81E+00 4.77E+00 4.78E+00 4.84E+00 4.81E+00 4.85E+00 4.83E+00 4.82E+00 4.83E+00 4.84E+00 4.86E+00 4.84E+00
WFG9 4.43E+00 4.51E+00 4.35E+00 4.46E+00 4.52E+00 4.38E+00 4.44E+00 4.38E+00 4.44E+00 4.43E+00 4.37E+00 4.40E+00 4.37E+00 4.43E+00 4.49E+00

c) M = 11

D = 20 D = 50 D = 100
-DE -jDE -JADE -EPSDE -SaDE -DE -jDE -JADE -EPSDE -SaDE -DE -jDE -JADE -EPSDE -SaDE

DTLZ1 4.19E+00 2.00E-01 1.88E-01 1.30E+00 2.91E-01 4.82E+01 4.75E+01 3.38E+01 9.35E+01 6.66E+01 1.86E+02 2.16E+02 1.93E+02 3.04E+02 2.56E+02
DTLZ2 8.20E-01 7.86E-01 7.97E-01 7.94E-01 7.93E-01 9.66E-01 7.90E-01 7.88E-01 7.90E-01 7.80E-01 1.08E+00 8.14E-01 8.03E-01 8.19E-01 7.80E-01
DTLZ3 4.26E+00 7.61E-01 7.61E-01 4.04E+00 7.64E-01 1.48E+02 1.09E+02 8.16E+01 3.76E+02 2.51E+02 4.55E+02 7.01E+02 8.74E+02 1.33E+03 1.18E+03
DTLZ4 8.30E-01 7.95E-01 7.76E-01 7.77E-01 7.79E-01 8.94E-01 8.52E-01 8.18E-01 8.36E-01 8.32E-01 9.73E-01 9.28E-01 8.72E-01 8.97E-01 9.10E-01
DTLZ5 7.72E-02 9.69E-02 9.64E-02 1.04E-01 9.55E-02 8.37E-02 8.01E-02 8.69E-02 8.48E-02 8.56E-02 1.25E-01 7.47E-02 8.95E-02 8.00E-02 8.12E-02
DTLZ6 6.78E-02 6.79E-02 6.89E-02 6.80E-02 6.95E-02 6.82E-02 6.79E-02 6.84E-02 6.94E-02 6.85E-02 7.14E-02 6.87E-02 7.16E-02 6.88E-02 7.12E-02
DTLZ7 1.57E+00 5.79E+00 6.62E+00 6.36E+00 5.68E+00 1.68E+00 5.73E+00 6.47E+00 5.96E+00 5.50E+00 3.56E+00 5.17E+00 6.20E+00 4.85E+00 4.65E+00
WFG1 2.36E+00 2.04E+00 2.04E+00 2.15E+00 2.07E+00 2.97E+00 2.64E+00 2.69E+00 2.58E+00 2.58E+00 3.36E+00 2.87E+00 2.99E+00 2.75E+00 2.82E+00
WFG2 2.24E+00 2.20E+00 2.20E+00 2.44E+00 2.15E+00 2.61E+00 2.37E+00 2.44E+00 2.44E+00 2.36E+00 2.65E+00 2.33E+00 2.39E+00 2.38E+00 2.37E+00
WFG3 3.25E+00 3.54E+00 3.51E+00 3.65E+00 3.59E+00 3.28E+00 3.39E+00 3.59E+00 3.46E+00 3.67E+00 3.28E+00 3.30E+00 3.43E+00 3.39E+00 3.49E+00
WFG4 8.95E+00 8.95E+00 9.39E+00 9.03E+00 9.19E+00 8.94E+00 8.90E+00 8.13E+00 8.45E+00 8.50E+00 8.94E+00 9.08E+00 9.09E+00 9.28E+00 9.15E+00
WFG5 8.63E+00 8.45E+00 8.40E+00 8.26E+00 8.45E+00 8.85E+00 8.33E+00 8.36E+00 8.34E+00 8.58E+00 9.10E+00 8.25E+00 8.48E+00 8.36E+00 8.59E+00
WFG6 9.42E+00 1.01E+01 1.01E+01 1.02E+01 9.86E+00 9.62E+00 1.00E+01 1.02E+01 1.02E+01 1.01E+01 9.66E+00 1.00E+01 1.02E+01 1.01E+01 9.91E+00
WFG7 9.15E+00 9.70E+00 9.58E+00 1.01E+01 9.70E+00 9.96E+00 9.01E+00 8.88E+00 8.89E+00 8.92E+00 9.79E+00 9.17E+00 9.21E+00 9.20E+00 9.10E+00
WFG8 1.06E+01 1.03E+01 1.03E+01 1.01E+01 1.04E+01 1.05E+01 1.00E+01 9.69E+00 9.77E+00 9.96E+00 1.02E+01 9.66E+00 9.41E+00 9.44E+00 9.86E+00
WFG9 8.78E+00 9.03E+00 9.55E+00 8.86E+00 9.01E+00 9.20E+00 9.03E+00 9.89E+00 9.16E+00 9.49E+00 9.00E+00 9.52E+00 1.01E+01 9.66E+00 9.92E+00

on small-scale problems; however, the randomization adap-
tation improves the scalability to the number of decision
variables and objectives. This is an interesting trend compared
to existing results for SOPs. Specifically, many works have
empirically revealed that the statistical adaptation (e.g., JADE
and SHADE) outperforms the randomization adaptation (e.g.,
jDE) on SOPs [14], [16]; this trend can be also observed for
D = 100 [9]. In fact, the randomization adaptation realizes
a well-scalable adaptive MOEA/D-DE to D and M on the
MOPs. Thus, we find a critical tradeoff among adaptive DEs
in terms of the scalability of the MOEA/D-DE framework.

We further analyze the tradeoff between MOEA/D-jDE and
MOEA/D-JADE in terms of the diversity of configurations and
the final individuals. Figs. 3, 4, and 5 show the adaptation

results of θF,i and θCR,i obtained by MOEA/D-jDE and
MOEA/D-JADE on WFG6 with D = 100,M = {3, 7, 11},
respectively. Figs. 6 and 7 show the distributions of position
variables of the final individuals obtained by MOEA/D-jDE
and MOEA/D-JADE on WFG6 for all M = {3, 7, 11} with
D = {50, 100}, respectively. Note that k position variables
defined in WFG problems have an impact to decide the
diversity of Pareto individuals. Note also that the variables are
compressed into two dimensions by t-SNE. From Fig. 3, 4, and
5, MOEA/D-jDE tends to derive relatively well-distributed
values of θF,i and θCR,i, while MOEA/D-JADE has a biased
distribution for all M = {3, 7, 11}. These tendencies cause
the difference of the distribution of the final individuals.
Specifically, in a) and b) in Fig. 6 and a) and b) in Fig. 7,
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both MOEA/D-jDE and MOEA/D-JADE generate position
variables that have approximately the same values. However,
in c) in Fig. 6 and c) in Fig. 7, position variables derived
by MOEA/D-jDE cover almost the same region as in the
position variables derived by MOEA/D-JADE. In addition,
MOEA/D-jDE also has position variables existed in other
regions. In other words, as D and M increase to 100 and
11, it becomes more pronounced that MOEA/D-jDE has
more diverse hyper-parameters than MOEA/D-JADE, which
makes the position variables of MOEA/D-jDE more diverse
than those of MOEA/D-JADE. Thus, although MOEA/D-
JADE derives better IGD in small-scale WFG6, MOEA/D-jDE
outperforms MOEA/D-JADE on WFG6 with increased D and
M by more diverse Pareto individuals of MOEA/D-jDE.

IV. CONCLUSION

This paper compared jDE, JADE, EPSDE, and SaDE on
the MOEA/D-DE framework to evaluate their scalability to the
number of decision variables D and objectives M . Our experi-
mental results provided the following observations. Firstly, the
adaptation of F and CR effectively improves the performance
of MOEA/D-DE compared to the adaptation of the mutation
strategy. However, the differences of the type of algorithmic
configurations to be adapted have less impact on the scalability
of the adaptive MOEA/D-DEs. Secondly, the difference of the
adaptation strategies (i.e., the randomization adaptation and
the statistical adaptation) can be a critical factor to affect the
scalability to the number of decision variables and objectives.
The JADE-like statistical adaptation outperforms the jDE-like

randomization adaptation on DTLZ and WFG problems with
D ≤ 50 and M ≤ 7. However, the jDE-like randomization
adaptation can contribute to realize a well-scalable adaptive
MOEA/D-DE. From those observations, we suggest that a
hybridization of the statistical and randomization adaptations
may be important to further improve adaptive MOEA/D-DEs.
The investigation of this suggestion can be our future work.
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