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ABSTRACT
In the field of surrogate-assisted evolutionary algorithms (SAEAs),
Gaussian Process (GP) is a widely used technique to approximate
the objective function. Although a GP model can provide an ex-
pected gradient of a function to be approximated, little attention
has been paid to the utilization of the gradient information. Thus,
this paper presents an expected gradient-based SAEA, in which
the expected gradient of the objective function provided by the
GP models is utilized to conduct an efficient local search. Specifi-
cally, the proposed algorithm first conducts a global search with
a differential evolution algorithm to find promising regions of the
search space. Then, it builds a GP model for each promising region,
and a quasi-Newton method (L-BFGS-B) is executed on its model
with guidance from the expected gradient. This gradient-based lo-
cal search intends to sufficiently search the approximate objective
function, by finding various local optimal solutions in an efficient
manner. Experimental results show that our algorithm is competi-
tive with state-of-the-art SAEAs on a single-objective optimization
benchmark suite.
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1 INTRODUCTION
In many real-world applications, expensive optimization problems
(EOPs) are often encountered, where fitness evaluations (FEs) are
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calculated from computationally expensive simulations [5]. This pa-
per considers single-objective EOPs. Surrogate-assisted evolution-
ary algorithms (SAEAs) [4] are an effective approach to addressing
EOPs. A basic idea of SAEAs is to estimate a promising solution
among candidate ones by assessing their quality with surrogates.
Usually, a surrogate is designed to approximate the objective func-
tion and is utilized to partially replace expensive FEs with its model
predictions. Typically, Gaussian Process (GP) [8] and Radial Basis
Function Network (RBFN) [10] are used as surrogate modeling tech-
niques. Many modern approximation-based SAEAs are designed
to alternately conduct global and local search phases with help of
surrogates [14]. Roughly speaking, the global search phase aims
to find new promising regions of the search space with a global
model which approximates the entire landscape of the objective
function. Whereas, the local search phase intends to intensively
search a particularly promising region with a local approximation
model adapted to its region.

For the local search phase, most existing SAEAs are designed
to estimate promising solutions by optimizing the approximation
model, i.e., the approximate objective function. EAs are usually
employed to optimize it, and they are executed for each model
update. Thus, the search capacity of EAs is crucial in determining
the efficiency of the local search. However, many existing works
set a small number of generations when executing EAs as the local
search [2]. For instance, SAHO [9] executes Differential Evolution
(DE) [12] with 30 generations in optimizing approximate objective
functions. This probably intends 1) to reduce the runtime because
the execution of EAs for each model update is time-consuming,
and/or 2) to prevent solutions from being guided to the wrong
region when approximation accuracy is low. However, the approxi-
mate objective function approximate model may not be sufficiently
optimized with such a restricted number of generations.

Thus, a possible approach to address the above issue is to use
gradient-based search algorithms for the local search if any gradi-
ent information is available. The gradient-based search is effective
because the convergence speed can be enhanced and the conver-
gence to the local optimum is guaranteed. Since GP is a stochastic
process, the expected gradient of an approximate function at any
point can be calculated [11]. This means that gradient-based search
algorithms, such as quasi-Newton methods, can be applied in the
optimization of the approximate objective function when the GP
model is employed. Although the GPmodel is widely used in SAEAs,
little attention has been paid to the utilization of the expected gra-
dient. Moreover, while the expected gradient is often used in the
literature on Bayesian Optimization field [3], the effectiveness of
the ensemble with evolutionary algorithms is uncovered.
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Accordingly, this paper presents an expected gradient-based
SAEA, in which a DE and a quasi-Newton method are used for
global and local phases, respectively. We use L-BFGS-B [15] as a
representative quasi-Newton method. Specifically, the proposed
algorithm first builds an RBFN to approximate the entire landscape
of the objective function, and then DE is executed on its model to
find promising regions of the search space. Next, a GP model is
built for each promising region, and L-BFGS-B is applied multiple
times to optimize each GP model with its expected gradient. This
local search phase intends to sufficiently explore the approximate
objective function by finding many local optimum solutions, by
taking the advantage of the efficient gradient-based algorithm.

This paper is organized as follows. Section 2 introduces the GP
model and its expected gradient. Section 3 explains the mechanism
of our proposal. In Section 4, we compare our proposal with state-of-
the-art SAEAs on CEC 2013 benchmark suite [6]. Finally, Section 5
describes our conclusion with future work.

2 GAUSSIAN PROCESS
For a scattered point sequence {(𝒙𝑖 , 𝑓 (𝒙𝑖 ))}𝑛𝑖=1, where 𝒙𝑖 ∈ R

𝐷 and
𝑓 : R𝐷 → R, the approximation of 𝑓 (𝒙) is;

𝑓 (𝒙) = 𝜇 + 𝜖 (𝒙), (1)

where 𝜇 is a global regression model and corresponds to the mean of
𝑓 , and 𝜖 (𝒙) is the deviation from 𝜇 and is defined as N(0, 𝜎2). The
correlation for the 𝑑-th dimensional deviation of any two points 𝒙𝑖
and 𝒙 𝑗 is expressed by the Gaussian correlation function as follows;

𝑘𝑖 𝑗,𝑑 (𝑥𝑖,𝑑 , 𝑥 𝑗,𝑑 ) = exp(−𝜃𝑑 | |𝒙𝑖,𝑑 − 𝒙 𝑗,𝑑 | |2), (2)

where𝜽 = [𝜃1, 𝜃2, . . . , 𝜃𝐷 ]T is a parameter that controls the strength
of the correlation. Let the correlation function matrix 𝐾 be an 𝑛 ×𝑛
matrix with 𝑘𝑖 𝑗 (𝒙𝑖 , 𝒙 𝑗 ) =

∏𝑛
𝑑=1 𝑘𝑖 𝑗,𝑑 (𝑥𝑖,𝑑 , 𝑥 𝑗,𝑑 ) elements. The pa-

rameter 𝜽 is searched in the range 𝜃𝑑 ∈ [𝜃𝑙𝑑 , 𝜃
𝑢
𝑑
] and the value is

used when the likelihood 𝐿 is maximum. Then, 𝜇 and 𝜎 are given
by;

𝐿(𝜇, 𝜎, 𝜽 ) = −𝑛
2
ln(𝜎2) − 1

2
ln( |𝐾 |), (3)

𝜇 =
1T𝐾−1𝒇
1T𝐾−11

, 𝜎2 =
(𝒇 − 1𝜇)T𝐾−1 (𝒇 − 1𝜇)

𝑛
. (4)

Finally, Eq. (1) is deformed as follows;

𝑓 (𝒙) = 𝜇 + 𝒌T𝒙𝐾−1 (𝒇 − 1𝜇), (5)

where 𝒌𝒙 is the 𝑛 × 1 correlation vector for a new point 𝒙 and each
element 𝒙 ∈ {(𝒙𝑖 , 𝑓 (𝒙𝑖 ))}𝑛𝑖=1, i.e., the scattered point sequence.

Considering GP is a stochastic process, the expected gradient of
the objective function can be obtained. More precisely, the gradient
is taken w.r.t. the new point 𝒙 and the expectation is over the
GP posterior distribution. Since the differentiation calculation is a
linear operation, the expected gradient is equivalent to the gradient
of the expected function value, i.e., the gradient of the approximate
objective function, if the process is mean-square differentiable.

The differentiation of Eq. (5) is as follows;

𝑔(𝒙) = 𝐽 (𝒙)T𝐾−1 (𝒇 − 1𝜇), (6)

𝐽 (𝒙)𝑖,𝑑 =
𝜕𝑘 (𝑥𝑖,𝑑 , 𝑥𝑑 )

𝜕𝑥𝑑
. (7)

3 PROPOSAL
The proposed algorithm consists of the following three phases; the
initialization, the DE-based global search with an RBFN model, and
the expected gradient-based local search with GP models. We use
the DACE model [8] as an implementation of GP model. The global
search intends to roughly explore the search space, aiming to find
promising regions to be searched by the local search. Whereas, the
local search intends to estimate local optimum solutions distributed
in multiple promising regions in an efficient manner, i.e., using a
gradient-based algorithm (L-BFGS-B).

Algorithm 1 shows the procedure of our proposal, wherein the
algorithm is terminated when the number of FEs, denoted as 𝐹𝐸,
reaches its maximum value 𝐹𝐸max. In the proposed algorithm, all
evaluated solutions with the original objective function are stored
in an archive set A. At the beginning of the search, 𝑁 initial
solutions {𝒙𝑖 }𝑁𝑖=1 are produced with Latin Hypercube Sampling
(LHS). Each initial solution is evaluated with the original objective
function 𝑓 . Then, all the initial solutions are inserted into A as
A = {(𝒙𝑖 , 𝑓 (𝒙𝑖 ))}𝑁𝑖=1. As a main loop, the global and local search
phases are executed alternately until the termination criterion is
met, which are described below.

3.1 DE-based global search
The procedure of this phase is described in lines 5-17 of Algorithm
1. As aforementioned, an RBFN model, denoted as 𝑓𝑔 , is built with
A. Next, DE is executed to find a good solution on 𝑓𝑔 . For the DE
settings, the top 𝑁 solutions in A, that is, solutions having the
top 𝑁 objective values, are used as the target solutions {𝒙𝑖 }𝑁𝑖=1;
and the number of generations is set to one. This is because the
global search phase intends to find new promising regions; other-
wise, DE is likely to find solutions belonging to regions that have
been already searched in the local search phase. Such a “one-shot”
exploration strategy has been widely used in SAEAs [1, 13]. Ac-
cordingly, new 𝑁 offspring solutions {𝒖𝑖 }𝑁𝑖=1 are generated in line 9
with the DE procedure. We use the best/1mutation and the binomial
crossover strategies. The approximate objective value for each off-
spring solution 𝑓𝑔 (𝒖𝑖 ) is calculated. Finally, the offspring solution
having the minimum value of 𝑓𝑔 (𝒖𝑖 ) is evaluated with the original
objective function, and it is inserted into A.

3.2 Expected gradient-based local search
The procedure of this phase is described in lines 19-31 of Algorithm
1. To beginwith, the algorithm estimatesmultiple promising regions
of the search space. Specifically, the algorithm produces 𝑁 samples
{𝒔𝑖 }𝑁𝑖=1, which are randomly distributed in the whole search space;
LHS is used to produce these samples. The approximate objective
values of all the samples are calculated by 𝑓𝑔 , i.e., the RBFN model
constructed in the global search phase; and 𝑀 superior samples
{𝒔∗𝑚}𝑀𝑚=1 are identified as having the top 𝑀 values of 𝑓𝑔 (𝒔). The
proposed algorithm then estimates a promising region that exists
close to each superior sample 𝒔∗𝑚 .

Next, the proposed algorithm builds𝑀 local GP models, in which
each model is specialized to a region close to its corresponding
superior sample; and then the algorithm conductsmultiple runs of L-
BFGS-B on each GPmodel. Specifically, for each superior sample 𝒔∗𝑚 ,
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Algorithm 1 Proposed Algorithm

1: Initialize {𝒙𝑖 }𝑁𝑖=1 by LHS and Evaluate
2: A = { (𝒙𝑖 , 𝑓 (𝒙𝑖 ) ) }𝑁𝑖=1, 𝐹𝐸 = 𝑁

3: while 𝐹𝐸 < 𝐹𝐸max do
4: // Global Exploration Phase //
5: Build the global RBFN surrogate model 𝑓𝑔 with A
6: Select top 𝑁 solutions {𝒙𝑖 }𝑁𝑖=1 and their fitness values from A
7: for 𝑖 = 1 to 𝑁 do
8: 𝒗𝑖 ← best/1-mutation with {𝒙𝑖 }𝑁𝑖=1
9: 𝒖𝑖 ← binomial-crossover with 𝒙𝑖 and 𝒗𝑖
10: 𝑓𝑔 (𝒖𝑖 ) ← Evaluate 𝒖𝑖 with 𝑓𝑔
11: end for
12: 𝒖∗ = arg min 𝑓𝑔 (𝒖𝑖 )
13: 𝑓 (𝒖∗ ) ← Evaluate 𝒖∗ with the original objective function 𝑓
14: 𝐹𝐸 = 𝐹𝐸 + 1, A = A ∪ { (𝒖∗, 𝑓 (𝒖∗ ) ) }
15: if 𝐹𝐸 ≥ 𝐹𝐸max then
16: return the best solution in A
17: end if
18: // Local Exploitation Phase //
19: Generate 𝑁 samples {𝒔𝑖 }𝑁𝑖=1 by LHS and Evaluate with 𝑓𝑔
20: Select𝑀 superior samples {𝒔∗𝑚 }𝑀𝑚=1 having top𝑀 values 𝑓𝑔 (𝒔 )
21: Set the candidate set C = ∅
22: for𝑚 = 1 to𝑀 do
23: D𝑚 ← 𝐾 closest solutions to 𝒔∗𝑚 from A
24: 𝑓𝑚 ← Build the GP surrogate model with D𝑚

25: Generate 𝐿 initial points by LHS with the range [𝑙𝑚,𝑗 ,𝑢𝑚,𝑗 ]𝐷
26: Conduct L-BFGS-B optimization for each initial points with 𝑓𝑚
27: Obtain 𝐿 candidate solutions and Add them and their 𝑓𝑚 to C
28: end for
29: 𝒙∗ ← the solution having the best 𝑓𝑚 (𝒙 ),𝑚 = {1, 2, . . . , 𝑀 }
30: 𝑓 (𝒙∗ ) ← Evaluate 𝒙∗ with the original function 𝑓
31: 𝐹𝐸 = 𝐹𝐸 + 1, A = A ∪ { (𝒙∗, 𝑓 (𝒙∗ ) ) }
32: end while
33: return the best solution in A

the𝐾 closest solutions to 𝒔∗𝑚 in Euclidean distance are selected from
A and used as training samples, forming a training datasetD𝑚 . The
local GP model 𝑓𝑚 is then built with these training samples. Next,
to conduct multiple runs of L-BFGS-B, 𝐿 different initial points are
randomly generated, wherein each point is sampled from a region
close to 𝒔∗𝑚 , that is, [𝑙𝑚,𝑗 , 𝑢𝑚,𝑗 ]𝐷 with 𝑙𝑚,𝑗 = min𝒙∈D𝑚

𝑥 𝑗 and
𝑢𝑚,𝑗 = max𝒙∈D𝑚

𝑥 𝑗 . Next, L-BFGS-B is executed for 𝐿 times with
these different initial points. Consequently, 𝐿 candidate solutions
are obtained. Finally, those candidate solutions along with their
approximate objective values of 𝑓𝑚 are stored in a candidate set C.

After the execution of the above procedure, the candidate set C
includes 𝐿 ×𝑀 candidate solutions, which are likely local optimal
solutions for the estimated promising regions. Note that 𝐿 solutions
are obtained from𝑀 GP models. The proposed algorithm compares
the quality of these solutions and identifies the most promising
solution to be evaluated with the original objective function. Specifi-
cally, the algorithm selects and then evaluates the candidate solution
having the best approximate objective value among the ones in C.

4 EXPERIMENT
This section compares the performances of the proposed algorithm
and the following five state-of-the-art SAEAs; S-JADE [2], SAHO
[9], GPEME [7], IKAEA [13], and GSGA [1]. GPEME and IKAEA are

representative GP-based SAEAs while S-JADE and SAHO are RBFN-
based SAEAs. GSGA uses both the GP model and the RBFN model.
Similar to the proposed algorithm, S-JADE and GSGA alternately
conduct the global and local search phases.

4.1 Experimental Design
We use the IEEE CEC 2013 real-parameter single-objective bench-
mark function suite [6]. The benchmark suite consists of five uni-
modal functions F1-F5, 15 multi-modal functions F6-F20, and eight
composition functions F21-F28. The bound constraint is [−100, 100]𝐷
for all the functions. We set the problem dimension as 𝐷 ∈ {10, 30}.

For hyper-parameters of the compared algorithms, the same
settings are used as in their original, which are summarized in
Table 1. For our proposal,𝑁 = 100, 𝐹 = 0.5,𝐶𝑅 = 0.9,𝑀 = 3,𝐾 = 50,
𝐿 = 5𝐷 , RBFN kernel = cubic, 𝜃 ∈ [10−5, 102], and 𝜃𝑖𝑛𝑖𝑡 = 10−2.

The maximum number of FEs 𝐹𝐸𝑚𝑎𝑥 is set to 1, 000.The perfor-
mance of each algorithm is evaluated as the best objective value and
is reported as the mean value of 15 independent runs. TheWilcoxon
rank-sum test is used to find a significant difference between their
performances with the significance level of 0.05.

4.2 Result
Tables 2 and 3 show the best objective values discovered at 1, 000
FEs for𝐷 = 10 and 30, respectively. Note that the best and the worst
values among algorithms are highlighted in green bold and pink,
respectively. The symbols “+” and “−” indicate that the performance
of proposed algorithm is significantly worse and better than that
of a compared algorithm, respectively; “∼” indicates that there is
no significant difference between their performances.

From Table 2, the performance of the proposed algorithm is com-
petitive to compared algorithms. The effectiveness of our proposed
algorithm can be further observed for 𝐷 = 30 (see Table 3). In addi-
tion, the proposed algorithm tends to perform well on multi-modal
functions (F6-F28). This result empirically supports the effectiveness
of our local search algorithm; the proposed algorithm conducts the
gradient-based search with different initial points to obtain various
local optima simultaneously.

Table 4 reports the summary of statistical results, i.e., “+/−/∼”,
when 𝐹𝐸𝑚𝑎𝑥 is set to 200, 400, . . . , 1, 000. From the table, S-JADE
and SAHO perform well ad 400 FE, where the proposed algorithm
may struggle to find promising regions during the global phases.
However, the proposed algorithm sufficiently outperforms all the
algorithms when 𝐹𝐸 ≤ 600.

5 CONCLUSION
This paper proposed an expected gradient-based SAEA, which uti-
lizes the expected gradient of GP models for the local search. A
main advantage of the proposed algorithm is that the GP model,
that is, the approximate objective function can be intensively opti-
mized with the efficient gradient-based local search. Experimental
result showed that the proposed algorithm is very competitive with
the state-of-the-art SAEAs.

In future work, we will integrate different gradient-based algo-
rithms into our proposed framework and validate their effectiveness.
We will also extend our approach to multi-objective optimization
problems.
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Table 1: Hyper-parameter settings.

Algorithm Hyper-parameters
S-JADE 𝑁 = 30, 𝐹𝑜𝑢𝑡 = 0.5, 𝐶𝑅𝑜𝑢𝑡 = 0.75, 𝑝𝑝𝑏𝑒𝑠𝑡𝑜𝑢𝑡 = 0.05, 𝐹𝑖𝑛 = 0.5, 𝐶𝑅𝑜𝑢𝑡 = 0.5, 𝑝𝑝𝑏𝑒𝑠𝑡𝑖𝑛 = 0.1,

𝑠𝑡𝑑𝐹 = 0.1, 𝑠𝑡𝑑𝐶𝑅 = 0.1, 𝐿 = 10, 𝜖 = 0.01, 𝑐 = 0.1, 𝐹𝐸𝑚𝑎𝑥𝑖𝑛 = 2, 000, kernel = cubic, and 𝑟 = 𝑟𝑎𝑛𝑑 (0, 1.25).
SAHO 𝑁 = 5𝐷 (𝐷 < 50) or 100 + ⌊𝐷/10⌋ (𝐷 ≥ 50), 𝐹 = 0.9, 𝐶𝑅 = 0.5, 𝐾 = 30, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 5𝐷 (𝐷 < 50) or 𝐷 (𝐷 ≥ 50), and kernel = cubic.
GPEME 𝑁 = 100, 𝐹 = 0.8,𝐶𝑅 = 0.8, 𝜏 = 100, 𝜆 = 50, 𝑙 = 4, 𝜔 = 2, regression = zero-order, correlation = Gaussian, 𝜃 ∈ [10−5, 102], and 𝜃𝑖𝑛𝑖𝑡 = 10−2.
IKAEA 𝑁𝑖𝑛𝑖𝑡 = 100, 𝑁 = 50, 𝐹 = 0.8, 𝐶𝑅 = 0.8, 𝜖 = 10−6, [𝜃𝑙

𝑑
, 𝜃𝑢
𝑑
] = [10−5, 102], 𝜃𝑖𝑛𝑖𝑡 = 1, ln𝐿min = −108.

GSGA 𝑁 = 50, 𝑃𝑐𝑟𝑜𝑠𝑠 = 0.9, 𝑃𝑚𝑢𝑡 = 0.1, 𝑁𝑠 = 𝑇𝑆 = 10, 𝑘max = 3,𝑀𝑃 = 0.5, 𝑝𝑐 = 0.1, 𝑑𝑙𝑖𝑚𝑖𝑡 = 0.01,
𝑒𝑠 = {1, 2}, 𝜌 = {0.25, 0.75}, kernel = cubic, 𝜃 ∈ [0.01, 20], and 𝜃𝑖𝑛𝑖𝑡 = 10.

Table 2: The best fitness values discovered at 1, 000 fitness
evaluations for 𝐷 = 10.

S-JADE SAHO GPEME IKAEA GSGA Proposal
F1 7.80E-06 − 2.88E-28 + 5.56E-12 + 4.32E-02 − 1.18E-05 − 3.96E-10
F2 2.71E+06 − 1.83E+06 − 1.36E+07 − 8.49E+04 + 5.94E+06 − 7.09E+05
F3 6.09E+09 + 5.57E+10 − 7.46E+09 ∼ 4.93E+09 + 4.14E+09 + 8.73E+09
F4 1.94E+04 − 2.10E+04 − 5.04E+04 − 1.58E+04 − 3.68E+04 − 1.06E+04
F5 4.35E+01 + 4.13E-02 + 1.57E-03 + 2.12E+02 ∼ 1.07E+02 + 2.52E+02
F6 7.89E+00 + 9.18E+00 + 8.94E+00 + 3.06E+00 + 1.08E+01 ∼ 1.41E+01
F7 1.14E+02 ∼ 3.20E+02 − 1.26E+02 ∼ 1.12E+02 + 7.98E+01 + 1.45E+02
F8 2.07E+01 ∼ 2.08E+01 ∼ 2.08E+01 ∼ 2.07E+01 ∼ 2.07E+01 ∼ 2.07E+01
F9 6.73E+00 ∼ 7.00E+00 ∼ 5.33E+00 ∼ 5.83E+00 ∼ 8.16E+00 − 6.42E+00
F10 4.24E-01 − 6.01E-01 − 9.81E-01 − 4.86E-01 − 4.66E+00 − 1.09E-01
F11 3.93E+01 − 4.89E+01 − 1.67E+01 ∼ 8.20E+01 − 2.54E+01 ∼ 2.12E+01
F12 5.15E+01 − 3.81E+01 − 3.78E+01 − 8.64E+01 − 3.09E+01 − 2.26E+01
F13 5.64E+01 ∼ 5.77E+01 ∼ 4.76E+01 ∼ 7.78E+01 − 6.15E+01 − 4.66E+01
F14 1.77E+03 − 1.27E+03 − 9.17E+02 ∼ 8.39E+02 ∼ 1.01E+03 ∼ 9.35E+02
F15 1.95E+03 − 1.62E+03 − 2.02E+03 − 1.49E+03 ∼ 1.45E+03 ∼ 1.32E+03
F16 2.50E+00 ∼ 2.25E+00 ∼ 2.32E+00 ∼ 2.27E+00 ∼ 2.11E+00 ∼ 2.30E+00
F17 5.03E+01 − 3.05E+01 ∼ 2.83E+01 − 8.65E+01 − 4.77E+01 − 2.25E+01
F18 5.66E+01 − 3.62E+01 ∼ 5.97E+01 − 8.66E+01 − 6.58E+01 − 3.10E+01
F19 1.01E+01 + 2.65E+02 + 1.04E+02 + 3.15E+02 + 4.29E+00 + 2.50E+03
F20 4.38E+00 − 4.48E+00 − 3.92E+00 ∼ 4.10E+00 ∼ 4.27E+00 ∼ 4.09E+00
F21 4.26E+02 + 4.50E+02 + 3.87E+02 + 6.67E+02 ∼ 3.80E+02 + 5.15E+02
F22 1.88E+03 − 1.69E+03 − 9.89E+02 + 1.11E+03 ∼ 1.22E+03 ∼ 1.28E+03
F23 2.26E+03 − 1.73E+03 − 1.85E+03 − 1.63E+03 − 1.61E+03 − 1.27E+03
F24 2.18E+02 ∼ 2.20E+02 ∼ 2.16E+02 ∼ 2.27E+02 − 2.22E+02 ∼ 2.20E+02
F25 2.17E+02 ∼ 2.16E+02 ∼ 2.16E+02 + 2.28E+02 − 2.22E+02 ∼ 2.20E+02
F26 2.07E+02 ∼ 2.07E+02 − 2.32E+02 − 2.08E+02 − 1.85E+02 + 1.98E+02
F27 4.51E+02 + 5.09E+02 ∼ 5.07E+02 ∼ 6.09E+02 − 5.09E+02 ∼ 5.30E+02
F28 8.34E+02 + 1.27E+03 ∼ 3.02E+02 + 9.87E+02 ∼ 3.98E+02 + 1.10E+03
+/−/∼ 7/13/8 5/13/10 8/9/11 5/13/10 7/10/11

NOTE: Signs +,−, and∼ indicate that the proposal significantly under-
performs, outperforms, is comparable with an algorithm, respectively.

Table 3: The best fitness values discovered at 1, 000 fitness
evaluations for 𝐷 = 30.

S-JADE SAHO GPEME IKAEA GSGA Proposal
F1 6.92E+00 + 1.88E-15 + 6.71E+02 − 3.12E-02 + 3.48E-04 + 2.75E+02
F2 9.40E+07 − 1.06E+07 + 1.41E+08 − 7.57E+07 − 1.05E+08 − 3.61E+07
F3 2.07E+15 ∼ 4.05E+17 − 4.59E+11 ∼ 1.81E+16 ∼ 2.95E+11 + 5.69E+13
F4 8.40E+04 + 1.25E+05 ∼ 1.75E+05 − 1.06E+05 ∼ 1.61E+05 − 1.17E+05
F5 3.12E+03 ∼ 1.79E+02 + 1.34E+03 + 3.07E+03 ∼ 2.75E+03 ∼ 2.53E+03
F6 1.08E+02 ∼ 4.22E+01 + 7.66E+01 + 2.02E+02 − 1.05E+02 ∼ 1.28E+02
F7 2.06E+04 − 2.09E+05 − 1.13E+03 ∼ 1.11E+05 ∼ 4.49E+02 + 2.61E+03
F8 2.12E+01 ∼ 2.12E+01 ∼ 2.12E+01 ∼ 2.12E+01 ∼ 2.12E+01 ∼ 2.12E+01
F9 3.75E+01 − 2.97E+01 ∼ 2.85E+01 ∼ 4.40E+01 − 3.87E+01 − 2.96E+01
F10 5.84E+01 ∼ 1.25E+00 + 2.98E+02 − 9.39E+00 + 1.22E+02 − 6.44E+01
F11 2.87E+02 − 2.80E+02 − 1.69E+02 − 2.97E+02 − 2.52E+02 − 1.24E+02
F12 3.02E+02 − 2.39E+02 − 2.94E+02 − 3.00E+02 − 2.87E+02 − 1.38E+02
F13 3.18E+02 − 3.00E+02 − 2.98E+02 − 2.96E+02 − 3.33E+02 − 2.58E+02
F14 7.90E+03 − 6.14E+03 ∼ 5.48E+03 ∼ 6.36E+03 ∼ 7.05E+03 − 5.30E+03
F15 8.67E+03 − 6.65E+03 ∼ 8.90E+03 − 8.80E+03 − 8.62E+03 − 7.11E+03
F16 4.51E+00 ∼ 4.59E+00 ∼ 4.46E+00 ∼ 4.74E+00 ∼ 4.58E+00 ∼ 4.40E+00
F17 2.74E+02 ∼ 2.70E+02 ∼ 2.56E+02 ∼ 3.14E+02 − 2.85E+02 − 2.44E+02
F18 2.91E+02 + 2.92E+02 ∼ 3.28E+02 ∼ 3.24E+02 ∼ 3.44E+02 ∼ 3.21E+02
F19 4.67E+04 ∼ 2.95E+05 − 7.49E+03 + 8.21E+03 + 1.88E+02 + 4.39E+04
F20 1.50E+01 ∼ 1.50E+01 ∼ 1.48E+01 ∼ 1.50E+01 − 1.50E+01 − 1.49E+01
F21 2.41E+03 + 4.34E+03 − 4.66E+03 − 2.43E+03 + 1.56E+03 + 2.75E+03
F22 8.47E+03 − 6.62E+03 ∼ 5.90E+03 ∼ 6.74E+03 ∼ 7.55E+03 − 5.68E+03
F23 9.17E+03 − 6.42E+03 + 9.28E+03 − 9.34E+03 − 9.06E+03 − 7.66E+03
F24 2.99E+02 − 2.88E+02 ∼ 2.72E+02 + 2.99E+02 − 3.03E+02 − 2.84E+02
F25 3.16E+02 − 3.02E+02 − 2.84E+02 + 3.34E+02 − 3.08E+02 − 2.93E+02
F26 3.35E+02 ∼ 3.59E+02 ∼ 3.85E+02 − 3.58E+02 ∼ 3.64E+02 ∼ 3.50E+02
F27 1.17E+03 − 1.08E+03 ∼ 1.03E+03 ∼ 1.49E+03 − 1.28E+03 − 1.08E+03
F28 4.65E+03 ∼ 7.51E+03 − 5.38E+03 − 5.37E+03 ∼ 4.03E+03 ∼ 4.16E+03
+/−/∼ 4/13/11 6/9/13 5/12/11 4/13/11 5/16/7

Table 4: Significant differences regarding findings for “+/−/∼”
between our proposal and state-of-the-art SAEAs.

𝐷 FE vs S-JADE vs SAHO vs GPEME vs IKAEA vs GSGA
200 11/ 1/16 12/ 0/16 2/12/14 5/10/13 6/ 5/17
400 7/ 8/13 9/ 2/17 5/11/12 4/13/11 7/12/ 9

10 600 8/11/ 9 6/10/12 7/11/10 4/11/13 7/15/ 6
800 7/13/ 8 5/13/10 5/11/12 4/12/12 7/13/ 8

1,000 7/13/ 8 5/13/10 8/ 9/11 5/13/10 7/10/11
200 12/ 1/15 4/ 6/18 0/14/14 2/15/11 6/ 5/17
400 8/ 4/16 9/ 6/13 3/ 9/16 2/ 8/18 4/10/14

30 600 6/ 7/15 8/ 7/13 4/ 8/16 4/ 7/17 5/12/11
800 7/11/10 6/10/12 4/10/14 5/11/12 6/14/ 8

1,000 4/13/11 6/ 9/13 5/12/11 4/13/11 5/16/ 7
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