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Abstract. Surrogate-assisted evolutionary algorithms (SAEAs) are grad-
ually gaining attention as a method for solving expensive optimization
problems with inequality constraints. Most SAEAs construct a surro-
gate model for each objective/constraint function and then aggregate
approximation functions of constraints to estimate the feasibility of un-
evaluated solutions. However, because of the aggregation, the differences
in the scales among constraints are ignored. Constraints with smaller
scales do not benefit from constraint handling techniques as much as
larger constraints, while the effects of handling constraints with larger
scales scatter to the other many constraints. This results in an inefficient
constraint optimization. Accordingly, this work proposes a new SAEA
that partially optimizes each objective/constraint, namely surrogate-
assisted partial optimization (SAPO). Solutions with better values of
objective/constraint are selected from the evaluated solutions as the par-
ent solutions and a focused objective/constraint is independently opti-
mized using surrogate models one by one. Experimental results reveal
the superiority of SAPO compared to the state-of-the-art SAEAs on a
single-objective optimization problem suite with inequality constraints
under an expensive optimization scenario.

Keywords: Surrogate-assisted Evolutionary Algorithm · Constrained
Optimization Problem · Expensive Optimization Problem · Radial Basis
Function Network · Differential Evolution.

1 Introduction

Such as wind turbine structure optimization [19] and aerospace and automotive
design [17], expensive constrained optimization problems (ECOPs) can often be
seen in the real world. In ECOPs, the function evaluations (FEs) are computa-
tionally or financially expensive because time-consuming simulations or expen-
sive physical experiments are used as FEs [11]. Hence, finding an optimal and
feasible solution within a limited number of FEs is required when solving ECOPs.
Expensive single-objective optimization problems with inequality constraints are
focused in this work.
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The formulation of an ECOP is as follows;

Minimize f(x), (1)
s.t. gm(x) ≤ 0, m = 1, 2, . . . ,M ,

xl
j ≤ x ≤ xu

j , j = 1, 2, . . . , D ,

where x is a solution, f : RD → R is the expensive objective function, D is the
number of decision variables, gm : RD → R is the m-th expensive constraint of M
constraints, and xl

j and xu
j are the lower and upper values for the j-th decision

variable, respectively. The feasibility of a solution is judged by the degree of
constraint violation given by;

G(x) =

M∑
m=1

max (gm(x), 0) . (2)

The solution x is feasible when G(x) = 0, otherwise x is infeasible.
Surrogate-assisted evolutionary algorithms (SAEAs) have begun to be ap-

plied to ECOPs [10]. SAEAs can save the consumption number of FEs by pre-
screening candidate solutions to be evaluated using surrogate models of objec-
tive/constraints made by machine learning (ML) techniques [22].

Most SAEAs construct surrogate models for the objective and each constraint
in Eq. (1) and form a response surface set (RSS),

{
f̂(x), ĝ1(x), ĝ2(x), . . . , ĝM (x)

}
[30]. An RSS can determine the structure of each constraint and capture the char-
acteristics of the feasible region boundaries [28]. In the early study on SAEAs
with an RSS, Regis et al. [23,20,21] found the radial basis function network
(RBFN) [18] can accurately approximate each in an RSS to some extent and
work well with various optimizers. To obtain a more accurate RSS, ASAGA
[24] and SACOBRA-MQcubic [1] adaptively select ML model types, e.g., RBFN
and Kriging [15], and radial basis function (RBF) types in RBFN, respectively.
Miranda-Varela and Mezura-Montes conducted an empirical study on constraint
handling techniques using the original SA-DECV framework [16] with a k Near-
est Neighbor [4,9]-based RSS. SACCDE [31] divides its population into two by
the feasibility rule [5] as a constraint handling technique and selects solutions
for the mutation strategy of differential evolution (DE) [25] from both groups to
generate a variety of offspring solutions. An RSS is used to estimate the feasibil-
ity of offspring solutions. GLoSADE [28] constructs global and local surrogate
models with RSSs and optimizes them with DE and the interior-point method,
respectively. This global-local structure is also adopted in FMSADE [3] and SA-
TSDE [14]. FMSADE employs the offspring generation method of SACCDE in
the global search while SA-TSDE introduces a surrogate-based repair strategy
to obtain a feasible solution using an RSS. MPMLS [12] constructs multiple local
surrogate models with different penalty coefficients for the approximation of the
degree of constraint violation calculated by an RSS. This mechanism contributes
to maintaining a good population diversity [12].

Although these SAEAs create RSSs, prescreening of solutions is performed
based on the approximation of the degree of constraint violation Ĝ(x), computed
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in the manner of Eq. (2) as follows;

Ĝ(x) =

M∑
m=1

max (ĝm(x), 0) . (3)

Considering, however, Ĝ(x) is an aggregation of each ĝm(x), the errors between
ĝm(x) and its true constraint gm(x) accumulate in Ĝ(x). What is worse, failing
to account for the differences in scales between constraints hinders an effec-
tive handling of constraints. In other words, relying on only Ĝ(x) to estimate
the feasibility of x lacks efficiency and robustness because the approximation
accuracy and the effect of constraint handling techniques are highly affected
by the scales of ĝm(x) among different m. For example, the improvement of
unfulfilled constraints with small scales is prevented by other constraints with
large scales because optimization effects of Ĝ(x) less contribute to small-scaled
constraints. On the other hand, constraints with larger scales converge slowly
as the optimization effect scatters to the other many constraints. One way to
tackle this challenge is the normalization of constraints like in SACOBRA [2].
However, even if the normalization is performed, handling only Ĝ(x) works well
only when constraints are correlated with each other. Furthermore, in general,
obtaining feasible solutions becomes more difficult as the problem dimension
D increases [27]. Thereby, optimizing each ĝm(x) with a small number of FEs
becomes more important with the increase of D.

Accordingly, this work proposes an SAEA named surrogate-assisted partial
optimization (SAPO), which optimizes each objective/constraint in turn. In
other words, SAPO partially (independently) optimizes each objective/constraint
while putting the other objective/constraints on hold. The RBFN is used to con-
struct an RSS. Unlike existing SAEAs, SAPO prescreens candidate solutions in
terms of each approximated constraint ĝm(x) or objective f̂(x) in an RSS in
place of Ĝ(x). SAPO can obtain solutions specialized for each ĝm(x) or f̂(x)

and thus each gm(x) or f̂(x) can be optimized effectively. To promote the en-
tire optimization of the objective and constraints, SAPO selects solutions with
better objective and constraint values to form parent solutions of DE. Thus,
the solution diversity is kept high even if SAPO focuses on a certain objec-
tive/constraint and improves it. To the best of our knowledge, this is the first
attempt to directly utilize the approximated constraint ĝm(x) as the criterion of
solution prescreening. The partial optimization of the objective and constraints
can be a new constraint handling technique. This work empirically demonstrates
that this new technique improves the performance of SAEAs on ECOPs because
more feasible solutions are found with fewer FEs.

The remainder of this work is organized as follows. Section 2 introduces
DE and RBFN as the component techniques of SAPO. Section 3 provides the
design concept and the detailed algorithm of SAPO. Section 4 compares the
performance of SAPO with state-of-the-art SAEAs on the CEC 2017 constrained
real-parameter optimization benchmark suite [29] within an expensive scenario.
In Section 5, we show the effectiveness of our partial optimization as an ablation
study. Lastly, Section 6 concludes our work and discusses future directions.
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2 Preliminary

This section introduces DE as the optimizer of the objective and constraints.
Successively, RBFN as an ML technique for surrogate models is explained.

2.1 DE: Differential Evolution

DE is an evolutionary algorithm originally proposed for real-parameter bound-
constrained single-objective optimization problems. The optimization process of
DE consists of initialization, mutation, crossover, and solution selection, where
procedures from mutation to solution selection are repeated till the termination.

DE initializes its population P = {xi}Ni=1, where N is the population size.
Specifically, DE samples each solution xi = [xi,1, . . . , xi,D]T using a uniform
distribution within xi,j ∈ [xl

j , x
u
j ]. The definition of xl

j and xu
j follows Eq. (1).

In the mutation procedure, a mutant solution vi = [vi,1, · · · , vi,D]T of each
xi, i.e., a parent solution, is produced using an employed mutation strategy.
To generate a variety of solutions, this work adopts two mutation strategies.
The rand/1 and best/1 strategies contribute to exploration and exploitation,
respectively. Definitions of these strategies are as follows;

rand/1 : vi = xr1 + F (xr2 − xr3), (4)
best/1 : vi = xbest + F (xr1 − xr2), (5)

where xr1 , xr2 , and xr3 are mutually exclusive solutions randomly selected from
P, also different from xi. The best solution xbest is a solution in P having the best
fitness value. A scaling factor F ∈ [0, 1] controls the contribution of differential
vectors (xr − xr′).

Next, DE generates a trial vector ui = [ui,1, · · · , ui,D]T as an offspring so-
lution via a crossover strategy and crossover rate CR ∈ [0, 1]. We use the most
popular binomial crossover strategy given by;

ui,j =

{
vi,j , if rand(0, 1) ≤ CR or j = jrand ,
xi,j , otherwise,

(6)

where jrand is an integer randomly selected from [1, D] and rand(0, 1) is a uni-
formly sampled real random value in (0, 1).

Finally, ui is evaluated and the solution for the next generation is selected,
i.e., xi is replaced with ui if f(ui) ≤ f(xi) for minimization problems.

2.2 RBFN: Radial Basis Function Network

RBFN is a feed-forward neural network with a three-layer structure. We employ
the RBFN as an ML technique for the surrogate model because its construction
or prediction time is relatively short and the model accuracy is scalable to the
increase of problem dimension [7]. Let a training dataset (size n), vector of func-
tion values, and an RBF be {(xi, f(xi))}ni=1, f = [f(x1), f(x2), . . . , f(xn)]

T,
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and ϕ(r), respectively. The cubic RBF ϕ(r) = r3 is used as it can establish a
fitness landscape that is more stable and exhibits improved convergence, thanks
to its ability to avoid ill-conditioning [26]. Note that RBFN can also be used to
approximate constraints by replacing f(x) with gm(x).

The approximation of f(x) for x can be formulated as follows;

f̂(x) =

n∑
i=1

λiϕ (∥x− xi∥) + p(x), (7)

where p(x) = cTx + c0 (c ∈ RD, c0 ∈ R) is regularization terms using a linear
polynomial function, and λi ∈ R is the i-th element of the weight vector λ =
[λ1, λ2, . . . , λn]

T.
Three parameters λ, c, and c0 in Eq. (7) are obtained by solving the following

equation; [
Φ P
PT 0m

] [
λ
c′

]
=

[
f
0

]
, (8)

where Φ is the n× n matrix with ϕij = ϕ (|xi − xj |), P ∈ Rn×(D+1) is a matrix
whose i-th row is

[
1, xT

i

]
, 0m is a (D+1)×(D+1) matrix of zeros, c′ =

[
cT, c0

]T,
and 0 is a column vector of zeros whose length is (D + 1).

3 SAPO: Surrogate-assisted Partial Optimization

This section starts by sharing the concept of SAPO and then explicates its
algorithm.

3.1 Concept

Different from existing SAEAs for ECOPs where all constraints are dealt with in
one bundle as the approximation of the degree of constraint violation, SAPO ad-
dresses an objective/constraint one by one, namely a partial optimization. This
idea is inspired by the partial differential equation (PDE). Focusing on one ele-
ment in PDE improves the efficiency of structure analysis or optimization [8,13].
That is, complex systems must be disassembled, and processed one by one.

Going back to ECOPs, the partial optimization has advantages below;

– Solutions suitable to an objective/constraint function can be screened by
surrogate models. Compared to only using the approximation of the degree
of constraint violation, this mechanism has a clearer intent to improve each
function. Thus, the optimization efficiency for each function is enhanced.

– Solution diversity is kept high until the end of the search because SAPO has
multiple criteria to prescreen offspring solutions.

– The partial optimization can handle the case where the scales among con-
straints are highly different. Unsatisfied constraints with relatively small
scales are also focused while they are likely to be ignored when only the de-
gree of constraint violation is used. Constraints with relatively large scales
are also improved with fewer FEs because they are exclusively considered.
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Fig. 1. A diagram of SAPO.

Algorithm 1 SAPO
1: Initialize the archive A = {

(
xi, f(xi), {gm(x)}Mm=1

)
}Ninit
i=1 , FE = Ninit

2: while FE < FEmax do
3: for all Target Function ← {f, g1, g2, . . . , gM} do
4: for all Selection Criterion ← {f, g1, g2, . . . , gM} \ Target Function do
5: S ← Algorithm 2(A, Selection Criterion, Target Function) // Selection
6: end for
7: P,D ← N, 5D solutions from S, respectively // Integration
8: U ← Generate offspring from P with DE Eqs. (4-6) // Generation
9: R ← Generate RSS using D with RBFN Eq. (7) // Generation

10: x∗ ← Algorithm 3(U , R, Target Function) // Prescreening
11: Evaluate x∗ and add it to A, FE = FE + 1
12: end for
13: end while

To fully utilize the partial optimization idea and the solution diversity men-
tioned above, parent solutions are selected from top solutions in terms of the
objective/constraints that are not focused on now. Thus, SAPO can generate
and prescreen offspring solutions that improve a focused objective/constraint
from parent solutions with good values of the other objective/constraints.

3.2 Mechanism

Algorithm 1 provides the complete pseudocode of SAPO. The algorithm consists
of three procedures; 1) Initialization, 2) Selection and Integration of evaluated
solutions to obtain parent solutions and training dataset, and 3) Generation of
offspring solutions and an RSS and Prescreening of offspring solutions. After
initialization, SAPO repeats 2) and 3) until the termination criteria are met.
Fig. 1 shows the diagram of 2) and 3). For each generation, SAPO sets a target
objective/constraint to be optimized and this sequentially changes to the next
one, i.e., in the order of f, g1, g2, . . . , gM , f, g1, . . . and so on.
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Algorithm 2 Selection
Input: Archive A, Objective/constraint as the selection criterion f or gm′ ,

Target objective/constraint to be optimized f or gm
Output: Selected and sorted set S
1: if f is the target to be optimized then
2: T1 ← Sort feasible solutions in A in ascending order of f
3: T2 ← Sort {x| x ∈ A ∧ gm′(x) ≤ 0 ∧ f(x) < f∗

fea} in ascending order of gm′

4: T3 ← Sort {x| x ∈ A ∧ gm′(x) ≤ 0 ∧ f(x) ≥ f∗
fea} in ascending order of f

5: T4 ← Sort {x| x ∈ A ∧ gm′(x) > 0 ∧ f(x) < f∗
fea} in ascending order of gm′

6: T5 ← Sort {x| x ∈ A ∧ gm′(x) > 0 ∧ f(x) ≥ f∗
fea} in ascending order of f

7: else if gm is the target to be optimized then
8: G ← {x| x ∈ A ∧ gm(x) > 0} // x that satisfy gm(x) need not be optimized
9: if f is the selection criterion then

10: T1 ← Sort {x| x ∈ G ∧ f(x) < f∗
fea} in ascending order of gm

11: T2 ← Sort {x| x ∈ G ∧ f(x) ≥ f∗
fea} in ascending order of f

12: else if gm′ is the selection criterion then
13: T1 ← Sort {x| x ∈ G ∧ gm′(x) ≤ 0 ∧ f(x) < f∗

fea} in ascending order of gm
14: T2 ← Sort {x| x ∈ G ∧ gm′(x) ≤ 0 ∧ f(x) ≥ f∗

fea} in ascending order of f
15: T3 ← Sort {x| x ∈ G ∧ gm′(x) > 0} in ascending order of gm′

16: end if
17: end if
18: S = [T1, T2, . . . , Tlast ]

Initialization Latin hypercube sampling is employed to sample Ninit points.
These points are evaluated with the objective and constraint functions. SAPO cre-
ates an archive A = {

(
xi, f(xi), {gm(xi)}Mm=1

)
}Ninit
i=1 to store all evaluated solu-

tions and their objective/constraint values.

Selection and Integration This phase intends to extract good solutions from
the archive to prepare parent solutions and a training dataset for an RSS. Here,
we define f∗

fea as the best fitness value among feasible solutions in A. If there are
no feasible solutions in A, f∗

fea is set to ∞. Solutions satisfying f(x) < f∗
fea are

infeasible but may be useful in the optimization if their constraints are improved.
Thus these solutions are utilized below.

First, SAPO makes M sets of selected and sorted solutions, where M is
the number of constraints. Each set is generated corresponding to each objec-
tive/constraint except for the target objective/constraint. Note that each solu-
tion in A can be selected multiple times. The selecting and sorting method is
summarized in Algorithm 2.

– When f is the target to be optimized, SAPO selects and sorts solutions for
each gm′ as Lines 1-6 of Algorithm 2. Let gm′ be a focused constraint as the
selection criterion in this phase. First, feasible solutions are selected from A
and sorted in ascending order of f and form T1. Next, xs that satisfy gm′ are
corrected. Among these solutions, ones that give f(x) < f∗

fea are preferred
as mentioned before. As gm′ is the criterion now, they are sorted with the
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Algorithm 3 Prescreening
Input: Offspring solutions U = {xi}|U|

i=1, RSS R, Target objective/constraint f or gm
Output: Selected solution x∗

1: if f is the target then
2: Calculate Ĝ(x) values of ∀x ∈ U by Eq. (3) using R
3: F ← {x| x ∈ U ∧ Ĝ(x) = 0} // x estimated to be feasible

4: x∗ =


arg
x∈F

min f̂(x), F ̸= ∅

arg
x∈U

min Ĝ(x), otherwise

5: else if gm is the target then
6: G ← {x| x ∈ U ∧ ĝm(x) ≤ 0} // x that satisfy ĝm(x)

7: x∗ =


arg
x∈G

min f̂(x), G ̸= ∅

arg
x∈U

min ĝm(x), otherwise

8: end if

gm′ values, forming T2. Then, xs that satisfy gm′ but give f(x) ≥ f∗
fea are

used. As they are inferior to x ∈ T2, the sorting order of T3 follows f values.
Similar procedures are performed to make T4 and T5 for xs that violate gm′ .
Finally, SAPO returns a set S by joining T1, T2, . . . , and T5 in this order.

– When gm is the target to be optimized, solutions that already satisfy gm
are ignored as they need not be optimized anymore, as shown in Line 8.
Solutions that violate gm are selected from A and consist of G. The remained
procedures are as Lines 9-15. If f is the selection criterion, solutions in G and
f(x) < f∗

fea are selected to utilize the possibility of improvement, forming T1.
However, sorting order follows the ascending order of the target constraint
gm as solutions in T1 lack feasibility. Next, solutions with f(x) ≥ f∗

fea form
T2 where solutions are ordered with f values. An output set is S = [T1, T2].
On the other hand, gm′ is taken into account when gm′ is the selection
criterion. The fulfillment of gm′ has the first priority. However, as gm′ ≤ 0 is
enough, the next priority becomes comparison with f∗

fea . Similarly, T1 and
T2 are obtained. Finally, solutions that violate gm′ are selected and sorted
In increasing order of the degree of violation of gm′ , forming S = [T1, T2, T3].

After gaining M sets of sorted solutions, they are integrated as follows. The
elements of each set are taken in order from the first one, let this be the parent
solution set P when there are N elements, and let this be the training dataset
D for constructing an RSS when its size becomes 5D.

Generation and Prescreening This phase begins by generating offspring so-
lutions and constructing an RSS. For the evolution of P, the mutation strategies
shown in Eqs. (4-5) and the crossover strategy in Eq. (6) are applied to P. Note
that the size of the offspring solution set U becomes double that of P, i.e., 2N .
To generate a variety of offspring solutions, P is copied, and two mutation strate-
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gies are independently used for each P. Successively, an RSS is constructed using
RBFNs and D as presented in Eq. (7).

Finally, SAPO prescreens U in terms of the target objective/constraint. The
detailed procedures are indicated in Algorithm 3. When f is the target, the
feasibility rule is employed. Specifically, Ĝ(x) calculated by Eq. (3) using an RSS
estimates the feasibility of solutions in U . If there are expected to be feasible
solutions, the solution having the minimum f̂(x) is selected. Otherwise, the
solution having the minimum Ĝ(x) is chosen. When gm is the target, however,
solutions that satisfy ĝm(x) are esteemed. Among them, x having the minimum
f̂(x) is selected, denoting x∗. If no solution fulfills ĝm(x), the solution with the
least violation of ĝm(x) is selected. The selected solution is evaluated with the
expensive function, and it and its objective/constraint values are added to A.

4 Experiment

Through a comparison of performances between SAPO and SAEAs for ECOPs,
we evaluate the effectiveness of SAPO.

4.1 Experimental Design

We use the IEEE CEC 2017 constrained real-parameter optimization benchmark
suite [29]. Nine problems with inequality constraints are selected from the suite,
i.e., F1, F2, F4, F5, F12, F13, F20, F21, and F22. Note that F19 and F28 are
excluded although they are problems with inequality constraints as they have no
feasible solutions according to the problem definition [29]. The problem dimen-
sions are set to D ∈ {30, 50, 100} to evaluate the scalability of the performance
of SAPO against the increase of D. The other settings follow the regulation
of competition [29]. All experiments are done with Intel(R) Core(TM) i7-10700
(2.90 GHz) CPU and 16 GB RAM.

Four state-of-the-art SAEAs, GLoSADE [28], FMSADE [3], MPMLS [12],
and SA-TSDE [14], are employed for the compared algorithms. All algorithms use
DE and RBFN, so we can fairly compare the performances. Note that GLoSADE,
FMSADE, and SA-TSDE adopt the interior point algorithm for the local search.
While these three SAEAs utilize global and local searches, MPMLS decomposes
the approximation of the degree of constraint violation Ĝ(x) using penalty coeffi-
cients. MPMLS and SAPO construct only local surrogate models. Consequently,
this work can investigate the impact of differences among global/local structures
and the deals of approximated constraints on the performance. Hyperparameter
settings of the compared algorithms follow the original papers [28,3,12,14]. For
SAPO, we set to Ninit = 100 for D ∈ {30, 50} and 200 for D = 100 so that
Ninit > D. We also use N = 100, F = 0.5, and CR = 0.9, following the original
paper of DE [25], and kernel = cubic, one of the most popular RBFN kernels.

Following the original papers [28,3,12,14], the maximum number of FEs is
set to 3, 000. The performance is evaluated with the average fitness values of
feasible solutions obtained in 31 independent runs for each problem and average
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ranks over nine problems. We apply the Wilcoxon rank-sum test with a signif-
icance level of 0.05 to check statistical significance. When reporting statistical
results, we use “+”, “−”, or “∼”, indicating the compared algorithm significantly
outperformed SAPO, significantly underperformed SAPO, or we cannot decide
that there is a significant difference, respectively. In case no feasible solution is
obtained within the observed number of FEs, a certain enough large fitness value
(1E+20) is assigned to the corresponding runs when computing statistical test
results and average ranks.

4.2 Result

Table 1 summarizes the average fitness values obtained at 3, 000 FEs for D ∈
{30, 50, 100}. SAPO derived six, six, and four best performances out of nine
problems in the order of D = 30, 50, and 100 and no worst performance. This
shows the robustness of SAPO over different problems, except for those on which
all algorithms failed in finding feasible solutions as shown in gray. This means the
partial optimization methodology proposed in this work contributed to steadily
improving the objective value while satisfying constraints on many types of prob-
lems. The average ranks shown at the bottom of Table 1 also demonstrate the
superiority of SAPO. Although the average rank slightly degrades as D increases,
each average rank is the best among the five algorithms for all D. Thus, the per-
formance of SAPO scales to the increase of problem dimension.

From a statistical point of view, the number of “+” indicating the superiority
of the compared algorithms is zero or one in all comparison pairs for all D. The
number of “−” indicating the inferiority of the compared algorithms is four and
seven at least and at most, respectively. Accordingly, the number of “−” is much
larger than that of “+” in all comparisons, where the maximum difference is seven
out of nine problems. The total results of 108 comparisons across the three types
of dimensions and the four compared algorithms are +/− / ∼= 3/67/38. These
results clearly indicate the outstanding performance of SAPO.

It is worth noting that SAPO derived a much larger number of successful
runs. For example, SAPO succeeded in finding feasible solutions in all runs on
F12 (D ∈ {30, 50}) and F21 (D = 30) although some or all of the other algo-
rithms failed. Even if D increased and the difficulty of finding feasible solutions
became higher, SAPO obtained multiple successful runs on the same problems,
i.e., F12 (D = 100) and F21 (D = 50), while the other algorithms could not suc-
ceed in any run. MPMLS is the best algorithm except SAPO in terms of finding
feasible solutions with better objective values, e.g., on F12 and F20. This may
be because MPMLS employs a decomposition strategy of Ĝ(x), unlike other
SAEAs. However, SAPO contributed to obtaining more feasible solutions with
better objective value on problems not only with one constraint but also with
multiple constraints. These results demonstrate the effectiveness of the partial
optimization methodology of SAPO, where each objective and constraint were
optimized directly and thus improved effectively. This methodology was also use-
ful for non-separable and rotated constraints like F2 and F5 as SAPO derived
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Table 1. The average fitness values at 3, 000 function evaluations for D ∈ {30, 50, 100}.
The integers next to the problem name in brackets indicate the number of constraints.
The best and worst results among the five algorithms are highlighted in green bold
and pink italic, respectively. When some of the 31 runs failed in obtaining feasible
solutions, the number of successful runs, i.e., cases where an algorithm found at least
one feasible solution, is noted in brackets. When all algorithms could not find feasible
solutions, corresponding cells are highlighted in gray. Statistical test result “+”, “−”, or
“∼” indicates the compared algorithm significantly outperformed SAPO, significantly
underperformed SAPO, or we cannot see a significant difference, respectively.

a) D = 30

Problem (# cons) GLoSADE FMSADE MPMLS SA-TSDE SAPO
F1 (1) 9.557e+03 − 4.164e+04 − 2.499e+04 − 7.389e+03 − 5.400e+03
F2 (1) 4.032e+03 − (1) − 5.468e+03 − 3.070e+03 − 2.110e+03
F4 (2) 3.883e+02 − 4.060e+02 − 1.973e+02 ∼ 2.148e+02 − 1.888e+02
F5 (2) 4.178e+01 − 3.183e+02 − 2.895e+01 ∼ 5.707e+01 − 3.251e+01
F12 (2) 1.517e+02 − (0) − 1.559e+01 − (30) − 1.261e+01
F13 (3) (0) − (0) − (0) − (7) ∼ (7)
F20 (2) 9.801e+00 ∼ 1.002e+01 ∼ 9.589e+00 + 9.920e+00 ∼ 9.877e+00
F21 (2) (0) − (0) − (29) − (0) − 1.075e+01
F22 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)
+/−/∼ 0/7/2 0/7/2 1/5/3 0/6/3 -
Ave. Rank 3.222 4.556 2.556 3.056 1.611

b) D = 50

Problem (# cons) GLoSADE FMSADE MPMLS SA-TSDE SAPO
F1 (1) 3.038e+04 − 1.064e+05 − 6.341e+04 − 3.852e+04 − 2.547e+04
F2 (1) 1.707e+04 − (0) − 2.087e+04 − 1.487e+04 − 1.056e+04
F4 (2) 6.819e+02 − 6.686e+02 − 4.574e+02 − 3.507e+02 − 3.100e+02
F5 (2) 2.444e+03 − (27) − 1.210e+02 − 1.879e+03 − 9.113e+01
F12 (2) (0) − (0) − 1.052e+02 − (0) − 1.429e+01
F13 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)
F20 (2) 1.824e+01 ∼ 1.882e+01 ∼ 1.803e+01 ∼ 1.860e+01 ∼ 1.838e+01
F21 (2) (0) − (0) − (0) − (0) − (30)
F22 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)
+/−/∼ 0/6/3 0/6/3 0/6/3 0/6/3 -
Ave. Rank 3.278 4.167 2.833 3.056 1.667

c) D = 100

Problem (# cons) GLoSADE FMSADE MPMLS SA-TSDE SAPO
F1 (1) 1.644e+05 ∼ 4.964e+05 − 2.352e+05 − 1.597e+05 ∼ 1.624e+05
F2 (1) 1.314e+05 − (0) − 9.185e+04 − 9.066e+04 − 7.763e+04
F4 (2) 1.491e+03 − 1.523e+03 − 1.257e+03 − 8.659e+02 − 7.750e+02
F5 (2) 4.271e+04 − (25) − 2.094e+03 − 2.385e+04 − 1.384e+03
F12 (2) (0) − (0) − (0) − (0) − (19)
F13 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)
F20 (2) 4.007e+01 + 4.067e+01 ∼ 3.969e+01 + 4.113e+01 ∼ 4.093e+01
F21 (2) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)
F22 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)
+/−/∼ 1/4/4 0/5/4 1/5/3 0/4/5 -
Ave. Rank 3.278 3.944 2.833 2.833 2.111

good performances on them. Even if decision variables cannot be separated, the
objective and constraints can be optimized independently.
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Table 2. Significant differences regarding findings for “+/− / ∼” between SAPO and
state-of-the-art SAEAs. Statistical test result “+”, “−”, or “∼” indicates the compared
algorithm significantly outperformed SAPO, significantly underperformed SAPO, or
we cannot see a significant difference, respectively. In the comparisons between the
numbers of “+” and “−”, the larger numbers are highlighted in bold.

D FE GLoSADE FMSADE MPMLS SA-TSDE
300 0/3/6 0/4/5 0/3/6 1/1/7
500 0/5/4 0/5/4 0/3/6 2/1/6

30 1,000 0/6/3 0/6/3 0/5/4 1/3/5
2,000 0/7/2 0/7/2 1/7/1 0/5/4
3,000 0/7/2 0/7/2 1/5/3 0/6/3

300 0/3/6 1/3/5 0/3/6 2/2/5
500 0/3/6 0/4/5 0/3/6 2/1/6

50 1,000 0/5/4 0/5/4 0/5/4 2/2/5
2,000 0/6/3 0/7/2 0/6/3 0/5/4
3,000 0/6/3 0/6/3 0/6/3 0/6/3

D FE GLoSADE FMSADE MPMLS SA-TSDE
300 0/ 2/7 0/ 3/6 0/ 1/ 8 2/ 2/ 5
500 1/ 2/6 0/ 3/6 1/ 2/ 6 2/ 2/ 5

100 1,000 1/ 3/5 0/ 4/5 1/ 2/ 6 2/ 2/ 5
2,000 0/ 3/6 0/ 4/5 1/ 3/ 5 1/ 2/ 6
3,000 1/ 4/4 0/ 5/4 1/ 5/ 3 0/ 4/ 5

300 0/ 8/19 1/10/16 0/ 7/20 5/ 5/17
500 1/10/16 0/12/15 1/ 8/18 6/ 4/17

Total 1,000 1/14/12 0/15/12 1/12/14 5/ 7/15
2,000 0/16/11 0/18/ 9 2/16/ 9 1/12/14
3,000 1/17/ 9 0/18/ 9 2/16/ 9 0/16/11

Furthermore, we show the results of Wilcoxon rank-sum tests at 300, 500,
1, 000, and 2, 000 FEs in addition to 3, 000 (baseline) FEs for D ∈ {30, 50, 100}
and their total number in Table 2 to evaluate the convergence performance
of SAPO. SAPO outperformed GLoSADE, FMSADE, and MPMLS on every
number of FEs in the table, where the number of “+” indicating the superiority
of the compared SAEAs is at most one. Although SAPO was competitive with
SA-TSDE before 1, 000 FEs, “−” outnumbers “+” after 2, 000 FEs, indicating
that SAPO kept improving the objective/constraint towards 3, 000 FEs. This
tendency can be observed in every D and their total. Therefore, we can confirm
the scalability of the performance of SAPO to the increase in the number of FEs.

5 Discussion

5.1 Impact of the Partial Optimization

Unlike existing SAEAs where constraints are treated as only an aggregation of
constraints, SAPO partially optimizes each objective/constraint. This subsection
investigates the effectiveness of the partial optimization proposed in this work.
Here, we prepared three variants of SAPO.

1. Variant using Aggregation (VUA) This variant is the most similar to the
mechanism of existing SAEAs, which employs the feasibility rule [5] using
aggregation of constraints, instead of partial optimization. The feasibility
rule is the representative constraint handling technique [12]. Specifically,
this variant selects and sorts solutions for parent solutions and the training
dataset of an RSS by Eq. (2) every time. Feasible solutions are preferentially
selected and sorted in ascending order of f(x). Then, infeasible solutions are
sorted in ascending order of G(x). DE offspring solutions and an RSS are
generated in the same manner as those of Section 3.2. Offspring solutions
are prescreened as Lines 2-4 in Algorithm 3. Comparison with this variant
reveals the impact of partial optimization.
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2. Variant Targeting Objective (VTO) This variant sets only the objec-
tive function as the target. Thus, solutions for DE parent solutions and the
training dataset are selected and sorted from good constraints. Specifically,
only Lines 1-6 and Lines 1-4 are conducted in Algorithm 2 and Algorithm 3,
respectively.

3. Variant Targeting Constraints (VTC) This variant sets only the con-
straints as the target. Hence, M constraints are partially optimized, but
solutions are not screened to improve f(x). Only Lines 9-15 and Lines 5-
7 are conducted in Algorithm 2 and Algorithm 3, respectively. VTO and
VTC are prepared to evaluate whether both the objective and constraints
are needed or not as the targets of the partial optimization.

The experimental design is similar to Section 4.1. Table 3 summarizes the re-
sults of the Wilcoxon rank-sum test. Statistical sign “+”, “−”, or “∼” indicates the
variant significantly outperformed SAPO, significantly underperformed SAPO,
or we cannot say that there is a significant difference, respectively. In comparison
with VUA, SAPO outperformed VUA at D = 30. Specifically, the number of
“+”, indicating the superiority of VUA, is larger than that of “−”, indicating the
inferiority of VUA, with 300 FEs. As the feasibility rule devotes many resources
to feasible solutions [12], the objective value is improved in the very early phase
of the search once feasible solutions are obtained. However, in problems where
obtaining feasible solutions is difficult, the use of the constraint aggregation G(x)
or its approximation Ĝ(x) requires more FEs to improve constraint violation in
the feasibility rule. Thus, the performance of VUA stagnated and the number
of “−” outnumbers that of “+” after 1, 000 FEs. The same tendency is observed
for D ∈ {50, 100}. Although the difference in the number of “−” and “+” de-
creases as D increases, SAPO outperformed VUA in total of all D. Thus, the
effectiveness of the partial optimization is confirmed.

In the comparison between SAPO and VTO, the performance of SAPO is
slightly better than that of VTO. A similar trend to the comparison between
SAPO and VUA is detected; the performance of VTO stagnated. Thus, partial
optimization of constraints is needed to keep improving the performance. On the
other hand, SAPO clearly outperformed VTC for all D. This indicates the im-
provement of the objective values is necessary although the partial optimization
of constraints contributes to the improvement of each constraint. From these
two comparisons, we identified that both the objective and constraints should
be dealt with as the targets of the partial optimization.

5.2 Impact of the Parallel Use of DE Mutation Strategies

SAPO uses both rand/1 and best/1 mutation strategies to produce a variety
of offspring solutions. This subsection evaluates the effectiveness of the parallel
use of two DE mutation strategies. We prepared two variants of SAPO; one uses
only rand/1 and the other uses only best/1. Note that these variants generate
2N offspring for fair comparison. Again, the experimental design is similar to
Section 4.1. Table 4 summarizes the results of the Wilcoxon rank-sum test. Sta-
tistical test sign “+”, “−”, or “∼” denotes the variant significantly outperformed
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Table 3. Significant differences regarding findings for “+/− / ∼” between SAPO and
its variants for an ablation study on partial optimization.

D = 30 D = 50 D = 100 Total
FE VUA VTO VTC VUA VTO VTC VUA VTO VTC VUA VTO VTC
300 3/1/5 3/0/6 1/4/4 2/0/7 3/0/6 0/3/6 2/0/7 4/0/5 0/4/5 7/ 1/19 10/0/17 1/11/15
500 1/3/5 3/0/6 0/8/1 5/0/4 5/0/4 1/4/4 4/0/5 4/0/5 0/4/5 10/ 3/14 12/0/15 1/16/10

1,000 0/5/4 0/5/4 0/8/1 4/0/5 4/0/5 0/6/3 6/0/3 4/0/5 0/6/3 10/ 5/12 8/5/14 0/20/ 7
2,000 0/5/4 0/4/5 0/8/1 2/1/6 2/2/5 0/7/2 2/1/6 2/1/6 0/7/2 4/ 7/16 4/7/16 0/22/ 5
3,000 0/5/4 0/3/6 0/8/1 0/3/6 0/3/6 0/6/3 1/3/5 1/2/6 0/6/3 1/11/15 1/8/18 0/20/ 7

Table 4. Significant differences regarding findings for “+/− / ∼” between SAPO and
its variants for an ablation study on the DE mutation strategies.

D = 30 D = 50 D = 100 Total
FE rand/1 best/1 rand/1 best/1 rand/1 best/1 rand/1 best/1
300 0/4/5 0/1/8 0/3/6 2/0/7 0/2/7 1/0/8 0/ 9/18 3/1/23
500 0/5/4 0/2/7 0/3/6 2/1/6 0/3/6 0/0/9 0/11/16 2/3/22

1,000 0/6/3 1/1/7 0/5/4 2/1/6 0/4/5 0/2/7 0/15/12 3/4/20
2,000 0/7/2 0/1/8 0/6/3 1/1/7 0/4/5 0/2/7 0/17/10 1/4/22
3,000 0/6/3 0/3/6 0/6/3 1/3/5 0/5/4 1/3/5 0/17/10 2/9/16

SAPO, significantly underperformed SAPO, or we cannot determine that there
is a significant difference, respectively. From the table, SAPO outperformed the
variant with rand/1 as no “+”. indicating the superiority of the variant, are
observed. The single-use of rand/1 lacks the exploitation ability. The variant
with best/1 derived slightly better performance than SAPO in the early stage of
optimization while SAPO became slightly better at the end of the search. This
indicates the strong exploitation ability of best/1 but the diversity of offspring
solution should be maintained by adding rand/1.

6 Conclusion

This work proposed an SAEA named surrogate-assisted partial optimization
(SAPO). SAPO selects and sorts solutions with good objective/constraint val-
ues to form parent solutions and then independently optimizes each objec-
tive/constraint one by one. In the experiment, SAPO derived significantly better
performance than existing SAEAs as SAPO dealt with each constraint effectively.
In the discussion, we showed our partial optimization methodology can find fea-
sible solutions with better objective values within a smaller number of FEs than
using only an approximation of constraint violation made by aggregation of con-
straint approximations, which is commonly used in existing SAEAs.

Future work includes an adaptive selection of the objective/constraint to
be optimized to improve the optimization efficiency. We are motivated to solve
the entire problem set of the CEC 2017 benchmark suite, including problems
with equality constraints. We will also extend SAPO for multi-objective ECOPs,
where surrogate models are constructed for independent objectives/constraints
or an aggregated function of all objectives/constraints [6].
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