
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-023-01340-9

ORIG INAL ART ICLE

Emulation-based adaptive differential evolution: fast and
auto-tunable approach for moderately expensive optimization
problems

Kei Nishihara1 ·Masaya Nakata1

Received: 26 July 2023 / Accepted: 29 December 2023
© The Author(s) 2024

Abstract
In the field of expensive optimization, numerous papers have proposed surrogate-assisted evolutionary algorithms (SAEAs) for
a few thousand or even hundreds of function evaluations. However, in reality, low-cost simulations suffice for a lot of real-world
problems, in which the number of function evaluations is moderately restricted, e.g., to several thousands. In such moderately
restricted scenario, SAEAs become unnecessarily time-consuming and tend to struggle with premature convergence. In
addition, tuning the SAEA parameters becomes impractical under the restricted budgets of function evaluations—in some
cases, inadequate configuration may degrade performance instead. In this context, this paper presents a fast and auto-tunable
evolutionary algorithm for solvingmoderately restricted expensive optimization problems. The presented algorithm is a variant
of adaptive differential evolution (DE) algorithms, and is called emulation-based adaptive DE or EBADE. The primary aim
of EBADE is to emulate the principle of sample-efficient optimization, such as that in SAEAs, by adaptively tuning the
DE parameter configurations. Specifically, similar to Expected Improvement-based sampling, EBADE identifies parameter
configurations that may produce expected-to-improve solutions, without using function evaluations. Further, EBADE incepts
a multi-population mechanism and assigns a parameter configuration to each subpopulation to estimate the effectiveness of
parameter configurations withmultiple samples carefully. This subpopulation-based adaptation can help improve the selection
accuracy of promising parameter configurations, even when using an expected-to-improve indicator with high uncertainty, by
validating with respect to multiple samples. The experimental results demonstrate that EBADE outperforms modern adaptive
DEs and is highly competitive compared to SAEAs with a much shorter runtime.

Keywords Adaptation · Differential evolution · Multi-population · Expensive optimization problem

Introduction

Several real-world applications, e.g., neural architecture
search [64] and aerodynamic design [17], require optimiza-
tion of expensive-to-evaluate objectives, where the objective
values are calculated using computationally expensive simu-
lations [44]. Considering vehicle structure optimization [39]
as an example, the evaluation of a single design using a
crashworthiness simulation takes 20h [39]. For such expen-
sive optimization problems (EOPs), the number of function
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evaluations (FEs) is restricted due to limited budgets of com-
putational and financial resources. Consequently, the main
challenge of EOPs is to obtain acceptable solutions under the
restricted number of FEs. For this challenge, sample-efficient
approaches, such as Bayesian optimization, that reduce the
number of FEs are prevalent.AlthoughEOPs are encountered
for both single-objective and multi-objective optimization
domains, this paper focuses on single-objective EOPs and
denotes them as EOPs for simplicity.

Over the last two decades, various sample-efficient
approaches have been developed based on evolutionary algo-
rithms (EAs) [13]. Themainmotivation behind this pursuit is
that typical EAs often assume hundreds of thousands of FEs
and thereby become impractical in terms of solving EOPs.
Several sample-efficient approaches consider very restricted
FE budgets, usually with a few thousand or even hundreds
of FEs. In addition to such extreme cases, there exist many
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EOP instances using low-cost simulations, where budgets are
moderately restricted to, e.g., several thousands of FEs. For
example, in the automatic calibration of watershed models
[54], a maximum of 10,000 FEs are used, and the corre-
sponding evaluation of one solution using the Soil andWater
Assessment Tool takes at least 2 min. However, such EOPs
with moderately restricted budgets, referred to as moderately
EOPs in this paper, have not undergone adequate systematic
research compared to ones with very restricted budgets.

Surrogate-assisted EAs (SAEAs) [8, 16] are a popular
sample-efficient approach for solving EOPs. Surrogate mod-
els of the objective function are constructed using machine
learning (ML) techniques, and SAEAs utilize them to iden-
tify expected-to-improve solutions. For example, several
works have proposed SAEAs using Bayesian optimization,
where EAs are used to optimize the Expected Improvement
(EI) metric [18]. SAEAs have been proven to be effective
when the number of FEs is a few thousand or in the order
of hundreds [13]. However, application of SAEAs to moder-
ately EOPs in practice experiences the following difficulties.

• Other than their excellent performance corresponding to
a few thousand of FEs, SAEAs tend to struggle with pre-
mature convergence when a higher number of FEs are
considered [47, 60]. This problem has been highlighted
more clearly in complex function landscapes [24].

• Owing to the aforementioned difficulty, tuning the
parameter configurations of SAEAs, which govern their
performance, is important [26, 32, 40].However, advance
fine-tuning under restricted FE budgets is usually hin-
dered in EOPs.

• Most SAEAs are time-consuming as they repeatedly
construct and reuse ML models during a run. Their run-
times are often not ascribed much importance, relying
on an assumption that they are negligibly smaller than
the computational times required by simulations [5, 10].
However, reducing the runtime becomes crucial when
using low-cost simulations [5].

Note that the second difficulty is not only applicable to
SAEAs but also EA-based algorithms; it is known that EA
performances depend significantly on their parameter con-
figurations [27]. Thus, despite the great success of SAEAs,
development of high-performance, auto-tunable, and com-
putationally efficient algorithms is essential.

Incorporating automatic parameter-tuning mechanisms
into EAs is an effective approach to improve performance
while avoiding manual parameter-tuning [20]. Adaptive EAs
[19] are a popular paradigm in this regard—their parameter
configurations are controlled during a run. For example, jDE
[3] controls two parameters used in the differential evolution
(DE) [46] algorithm—the scaling factor and the mutation
rate. In addition to these two parameters, SaDE [42] con-

trols mutation and crossover strategies of DE. Several works
have proposed various adaptive EAs and established that they
outperform standard EAs, with comparable runtimes [3, 23,
61].

Accordingly, adaptive EAs can be used to develop com-
putationally efficient and auto-tunable methods for solving
moderately EOPs. However, most adaptive EAs are not
designed for this purpose as they usually assume hundreds
of thousands of FEs [23, 41]. In particular, the adaptive
EA, in its basic form, is subject to the following limita-
tions when it is extended to an EOP. Most adaptive EAs
are designed to update new parameter configurations based
on ones that generate good solutions in past generations, and
updated parameter settings are employed without validating
their effectiveness in advance. This may require extensive
trial-and-error to identify good parameter configurations and
thereby requires a high number of FEs [29]. Further, most
adaptive EAs are designed to assign different parameter con-
figurations to each solution in a population, i.e., so-called
individual-based adaptation. However, this adaptation style
may be less effective in reliably identifying a good parameter
configuration, because the effectiveness of each configura-
tion is usually validated with respect to only one sample.

This paper presents a novel adaptive EA as a compu-
tationally efficient and auto-tunable approach for solving
moderately EOPs. The presented algorithm, an emulation-
based adaptive DE (EBADE), is based on the DE framework
and does not utilize surrogate models. However, to improve
sampling efficiency, EBADE is designed to emulate the
principle of sample-efficient approaches, such as those in
SAEAs, by controlling the parameter configurations. In par-
ticular, the following two strategies are involved in EBADE.
First, a prior validation process is introduced to pre-screen
candidate parameter configurations before use. In this pro-
cess, as in EI-based sampling, candidates that likely generate
“expected-to-improve” solutions are selected without using
FEs. This intends to prevent the use of less-effective param-
eter configurations and thereby reduce the number of FEs.
Second, EBADE employs a subpopulation-based adaptation,
in which a parameter configuration is assigned to each sub-
population, rather than to each solution. Thus, eachparameter
configuration is used to produce multiple solutions to update
its corresponding subpopulation. This intends to validate
the effectiveness of parameter configurations using multiple
samples carefully. That is, in EOP, parameter configurations
should be evaluated by multiple samples. The main contri-
butions of this work are as follows:

• To the best of our knowledge, this is the first attempt
to develop an adaptive EA for moderately EOPs. This
paper contributes to the development of computationally
efficient and auto-tunable approaches for EOPs.
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• An adaptation mechanism for parameter configurations
effective under restricted FE budgets is introduced. Its
effectiveness is validated by comparing EBADE with
not only popular adaptive DEs but also state-of-the-art
SAEAs.

Note that our previous work [37] presented an early inves-
tigation on the prior validation mechanism and integrated
it into two popular adaptive DEs—jDE and SaDE. How-
ever, the prior validation process was designed to pre-screen
candidate parameter configurations based on their ability
to reproduce the current best solution, which suffers from
premature convergence. Further, it was applicable only to
individual-based adaptation frameworks like jDE and SaDE.
Consequently, the prior validation-based jDE and SaDE
underperform in the case of moderately EOPs compared to
state-of-the-art SAEAs. EBADE extends the prior validation
process to emulate EI-based sampling on the subpopulation-
based adaptation framework.

The remainder of this paper is organized as follows.
Section2 describes the standard DE framework, as well as
possible parameters and genetic operators considered as pri-
mary options in the present study. The latter half of Sect. 2
presents a literature review. Section3 presents the detailed
mechanism of EBADE. Section4 reports experiments con-
ducted using the CEC 2013 real-parameter single-objective
benchmark function suite [25]. We compare the perfor-
mances of EBADE and popular adaptive DEs as well as
state-of-the-art SAEAs to investigate their effectiveness for
moderatelyEOPs. Section5discusses theEBADEalgorithm.
Finally, Sect. 6 presents our conclusions and prospective
directions of future research.

Background

This section describes theDE algorithm as background infor-
mation. Subsequently, related works are summarized.

Differential Evolution

DE is a population-based evolutionary algorithm for solv-
ing a real-parameter optimization problem using a single-
objective function, f : R

D → R, where D denotes the
problem dimension. In this paper, we consider the mini-
mization of f , where the search space X is bounded by
X ∈ [l j , u j ]Dj=1.

During initialization, DE produces and then evaluates N
initial solutions, forming an initial population P = {xi }Ni=1.
Each initial solution is uniformly sampled from the search
spaceX. Subsequently, as themain loop, all solutions inP are
updated via the following procedures. For each solution xi , a
mutant solution vi is produced using a definedmutation strat-

Table 1 Popular mutation strategies for DE

Strategy Definition

rand/1 vi = xr1 + F(xr2 − xr3 )

rand/2 vi = xr1 + F(xr2 − xr3 ) + F(xr4 − xr5 )

best/1 vi = xbest + F(xr1 − xr2 )

best/2 vi = xbest + F(xr1 − xr2 ) + F(xr3 − xr4 )

current-to-rand/1 vi = xi + F(xr1 − xi ) + F(xr2 − xr3 )

current-to-best/1 vi = xi + F(xbest − xi ) + F(xr1 − xr2 )

current-to-pbest/1 vi = xi + F(xpbest − xi ) + F(xr1 − xr2 )

rand-to-best/1 vi = xr1 + F(xbest − xr1 ) + F(xr2 − xr3 )

Algorithm 1 Binomial crossover
Require: a base solution x, a mutant solution v, a crossover rate CR
1: Set u as a duplicate of x
2: Set jrand to a random integer sampled from {1, 2, . . . , D}
3: for j = 1 to D do
4: if rand[0, 1] ≤ CR or j = jrand then
5: Set j-th variable of u to that of v as u j = v j
6: end if
7: end for
8: return u

Algorithm 2 Exponential crossover
Require: a base solution x, a mutant solution v, a crossover rate CR
1: Set u as a duplicate of x
2: Set j to a random integer sampled from {1, 2, . . . , D}
3: Set k as k = 1
4: repeat
5: Set j th variable of u to that of v as u j = v j
6: Update j as j = ( j + 1) mod D
7: Update k as k = k + 1
8: until rand[0, 1] ≥ CR or k ≥ D
9: return u

egy with a scaling factor F ∈ [0, 1]. Note that the original
paper considers F ∈ [0, 2] [46], but F ∈ [0, 1] is typi-
cally assumed [52]. Table 1 summarizes popular mutation
strategies, where xr1 , xr2 , xr3 , xr4 , and xr5 denote mutually
exclusive solutions randomly selected from P and different
from xi ; xbest denotes the current best solution in P; and
xpbest denotes a randomly selected solution from the top
�N × p� solutions inPwhere p ∈ [0, 1] is a hyperparameter
to define greediness [63]. Next, a trial solution ui is generated
by applying a defined crossover strategy to xi and vi with
a crossover rate CR ∈ [0, 1]. Typically, binomial or expo-
nential crossover strategies are used, which are described in
Algorithms 1 and 2, respectively, where rand[0, 1] denotes
a random value in [0, 1] sampled from a unified distribu-
tion. After generating trial solutions for all the solutions,
they are evaluated using f . If ui is not worse than xi , i.e.,
f (ui ) ≤ f (xi ), xi is updated using ui . These procedures are
repeated until the termination criteria are satisfied.
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Table 2 List of adaptive and surrogate-assisted DEs for single-objective optimization

Algorithm Adaptation style D FEmax

Adaptive DEs

jDE [3] Indiv {2, 4, 30} 10,000–20,000,000

FDSADE [53] Indiv {2, 4, 30} 50,000

ISADE [15] Indiv 30 300,000

JADE [63] Indiv {2, 3, 4, 6, 30, 100} 6000–8,000,000

MDE_pBX [14] Indiv {30, 50, 100} D×10,000

SHADE [50] Indiv 30 300,000

L-SHADE [51] Indiv {10, 30, 50, 100} D×10,000

jSO [4] Indiv {10, 30, 50, 100} D×10,000

SaDE [42] Indiv {10, 30} 100,000–500,000

CoDE [55] Indiv 30 300,000

EPSDE [35] Indiv {10, 30, 50} D×10,000

CSDE [48] Indiv {30, 50, 100} D×10,000

AL-SHADE [23] Indiv {10, 30, 50} D×10,000

DE-DDQN [45] Indiv {10, 30} 10,000

FLDE [49] Indiv {10, 30, 50, 100} D×10,000

DE with two subpopulations [31] Subpop 30 300,000

MPEDE [58] Subpop {30, 50} D×10,000

HMJCDE [22] Subpop {30, 50} D×10,000

EDEV [59] Subpop {30, 50} D×10,000

Surrogate-assisted DEs

CADE [30] – 30 {10,000, 20,000}

CRADE [28] – {30, 500} 10,000

GPEME [26] – {20, 30, 50} 1000

ESAO [57] – {20, 30, 50, 100, 200} 1000

SAHO [40] – {10, 20, 30, 50, 100} {110, 220, 330, 1000}

DSS-DE [32] – {30, 50, 100} 1000

SADE-ATDSC [38] – {10, 30, 50, 100} 1000

DE-AEC [62] Indiv {2, 3, 4, 6} 100,000

S-JADE [7] Indiv {20, 30, 50, 100, 200} {1000, 1500, 2000}

SMDE [21] Indiv {10, 25, 60, 72, 942} 12,000

DESSA [29] Indiv 30 3000

SMA-EPSDE [33] Indiv {10, 30} D×10,000

ESMDE [34] Indiv {10, 30} D×10,000

Sa-DE-DPS [11] Indiv {10, 20, 30} D× 50

SAPDE-ANN, SAPDE-RSM [1] Indiv {10, 30} D×10,000

EBADE (Proposed algorithm) Subpop {10, 20, 30} 6000

Columns “D” and “FEmax” list the problem dimension and the maximum number of fitness evaluations adopted in the experiments, respectively

Related works

This subsection first reviews popular adaptive DEs. Then,
surrogate-assisted DEs are introduced. Finally, the position
of EBADE in this context is discussed.

Table 2 summarizes the related works discussed below.
In the “Adaptation style” column, related works are cate-
gorized into two classes—Indiv. and Subpop. correspond-

ing to individual-based and subpopulation-based adapta-
tion, respectively. For algorithms without adaptation of any
parameter configuration, the entry in this column is set to
“–”. The problem dimension and maximum number of FEs
adopted in the experiments are listed in the columns “D”
and “FEmax”, respectively, to indicate the type of problem
addressed.
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Adaptive DEs

Individual-based adaptation
In the jDE [3] framework, each solution is paired with spe-
cific values of F and CR, i.e., individual-based adaptation.
This may potentially provide suitable parameter configura-
tions for a particular solution. The hyperparameters F and
CR are randomly sampled once again with predefined prob-
abilities τF and τCR. They can then be updated based on
comparisons between a solution and a trial solution in terms
of fitness. This comparison-based adaptation utilizes the
algorithm characteristic of the DE framework [52]. Several
branches of jDE have been proposed, including FDSADE
[53] and ISADE [15], which adaptively control both τF and
τCR. JADE [63] explored another paradigm of the sampling
method of the hyperparameters utilizing probabilistic distri-
butions determined using previous information concerning
superior solutions, which is different from uniform ran-
dom sampling used in jDE. JADE revealed the impact of
the sampling method on adaptive DEs, and several subse-
quent variants have incorporated the concept of JADE, e.g.,
MDE_pBX [14] and SHADE [50]. SHADE is a highly pop-
ular variant among adaptive DEs that updates probabilistic
distributions using success-history memories. This mecha-
nism improves the robustness of JADE by maintaining a
diverse set of parameters of probabilistic distributions. Mod-
ern approaches, includingL-SHADE [51] and jSO [4], utilize
the SHADE framework to control F and CR. They also
control N using linear population size reduction, which pro-
motes a transition from exploration to exploitation with the
progression of the search phase. Additionally, jSO employs
fine-tuned scheduling-based adaptation.

Some adaptive DEs control both genetic operators and
hyperparameters as parameter configurations to improve the
capacity to specialize the framework to a given problem.
However, this suffers from the drawback of increased com-
plexity due to the increase in the number of parameter
configurations requiring adaptation. One possible approach
to address the bottleneck involves predefined sets of parame-
ter configurations, e.g., SaDE [42] defines a limited number
of pairs of mutations and crossovers, e.g., rand/1/bin and
rand-to-best/2/bin. Similarly,CoDE[55] prepares predefined
parameter sets {F,CR} as well as pairs of genetic opera-
tors. EPSDE [35] adapts parameter configurations selected
from two pools of hyperparameters and genetic operators.
Recently, the selection of the best mutation strategy in adap-
tive DEs from all candidates has been studied. CSDE [48]
and AL-SHADE [23] are state-of-the-art adaptive DEs that
demonstrate that adaptation of mutation strategies remains
important while proposing new mutation strategies. DE-
DDQN [45] and FLDE [49] primarily adapt to mutation
strategies via reinforcement learning and random forest,

respectively, but these ML-based methods require long com-
putational times.

Subpopulation-based adaptation
Recent studies have integrated a multi-population scheme
into the DE framework to utilize the divide-and-conquer
strategy. They divide the population intomultiple subpopula-
tions, with each searching a different area. When the adapta-
tion mechanism is included in a multi-population scheme,
different parameter configurations of DE are assigned to
subpopulations. For example, two populations are used for
exploitation and exploration in the study [31]. In MPEDE
[58], three defined parameter configurations are paired with
corresponding subpopulations, where each subpopulation
size is adaptively controlled depending on the current search
dynamics. Moreover, some works allocate different adapta-
tion mechanisms of existing adaptive DEs to subpopulations
to further improve performance by combining various adap-
tation mechanisms. For instance, a hybrid amalgamation of
CoDE and JADEwas proposed asHMJCDE [22], and EDEV
[59] incorporates EPSDE, CoDE, and JADE.

Surrogate-assisted DEs

Surrogate-assisted DEs without adaptation of DE parame-
ter configurations
In EOPs, especially under severely restricted FE budgets,
SAEAs comprise one of the most popular approaches. We
now introduce some surrogate-assistedDEs.CADE [30] uses
a support vector machine (SVM) as the classification model
to screen solutions, reducing the number of FEs. CRADE
[28] combines two SVMs to approximate the objective func-
tion and classify solutions, compensating for the weaknesses
of both models. GPEME [26] is a standard SAEA, which
reduces dimension using the Sammon mapping when the
problem dimension exceeds 30. Then, it generates offspring
solutions and evaluates only one solution that is “expected-to-
improve” using the lower confidence bound metric obtained
by the Kriging model constructed using recently evaluated
solutions. ESAO [57] combines the global radial basis func-
tion network (RBFN) and the local Kriging model. RBFN
is used to roughly select a search region and the elaborate
search is conducted using the Kriging model. SAHO [40]
adaptively selects optimizers from DE and TLBO [43] while
screening solutions using RBFN to design diverse searches.
Recently, SAEAs that adaptively select RBFNs with differ-
ent configurations have been proposed, e.g., DSS-DE [32]
and SADE-ATDSC [38], since the performances of SAEAs
depend on parameter configurations of both EAs and MLs.

Surrogate-assisted DEs with individual-based adaptation
Some surrogate-assisted DEs incorporate adaptive DE

mechanisms into SAEAs to inherit the advantages of both
EAs and SAEAs. However, most of these algorithms use
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individual-based adaptation—SAEAs with subpopulation-
based adaptation have not been developed. For example,
DE-AEC [62] uses RBFN to screen solutions and adapts F
and CR, as in jDE. S-JADE [7] enhances the performance
of JADE using RBFN. Like ESAO, S-JADE [7] utilizes two
types of RBFNs; global and local RBFNs are constructed
using all evaluated solutions and neighborhood solutions of
the current population, respectively.

Alternatively,DEparameter configurations have also been
adapted while screening solutions. This produces various
solutions to be screened by varying DE parameter con-
figurations. SMDE [21] uses four mutation strategies and
generates the same number of offspring solutions via muta-
tion strategies for each base solution. Then, the solution
with the best predicted fitness is adopted. Thus, SBSM-
DE considers four candidate solutions generated in different
ways, although FE is conducted only once per base solu-
tion. Other examples are as follows. DESSA [29] is used
with CoDE or SaDE. For example, DESSA-CoDE has three
sets of parameters and three mutation strategies, i.e., nine
pairs of parameter configurations are considered as adap-
tation candidates. After generating the nine corresponding
trial solutions, rank-SVM is used as a surrogate model for
screening. SMA-EPSDE [33] and ESMDE [34] are deriva-
tives of EPSDE and use two mutation strategies (rand/1
and current-to-rand/1), two crossover strategies (binomial
and exponential), F ∈ [0.5, 1.0], and CR ∈ [0.0, 1.0] as
candidate parameter configurations. They randomly sample
parameter configurations and generate solutions until the
approximated fitness exceeds the fitness of base solutions.
The difference between SMA-EPSDE and ESMDE com-
prises the dataset selection criteria for the Kriging model.
Sa-DE-DPS [11], SAPDE-ANN [1], and SAPDE-RSM [1]
conduct a search on the approximation function for a certain
number of generations while adapting parameter configura-
tions to accelerate the search.

Position of EBADE in this context

According to Table 2, most adaptive DEs are tested with D×
10,000 FEs, while many surrogate-assisted DEs are designed
for FEs not exceeding 1000. Some surrogate-assisted DEs
which screen solutions and adapt parameter configurations
simultaneously use D× 10,000 FEs, but real-world EOPs
with more than 10,000 FEs are rarely encountered [2,
9, 12, 17, 21, 32, 36, 56, 57]. Thus, we investigate if
EBADE improves performance within 10,000 FEs, i.e., for
moderately EOPs.

As noted in the “Adaptation style” column in Table 2,
most existing adaptive DEs use individual-based adaptation,
while subpopulation-based adaptation is only being studied
recently. In this study, EBADE adapts parameter configura-
tions using subpopulation-based adaptation, without using

surrogate models. In the experiments presented in Sect. 4,
we compare EBADE with adaptive DEs and SAEAs. For
adaptive DEs, we choose comparison algorithms based on
both individual-based and subpopulation-based adaptation
to investigate the effectiveness of EBADE compared to both
typical and modern categories.

The prior validation mechanism of EBADE introduced
in the next section has never been discussed in the existing
literature. In contrast, most adaptive EAs update parameter
configurations by referring to those that have generated good
solutions in past generations.

Proposed algorithm

The proposed algorithm, EBADE, is an adaptive DE for
solving EOPs. In contrast to typical adaptive EAs, a prior
validation process is utilized to identify good DE parameter
configurations before using them. This accelerates the evolu-
tionary search while reducing the number of FEs by avoiding
the use of less effective parameter configurations. Here, we
first discuss the idea underlying our prior validation process,
i.e., the process of estimating the effectiveness of parameter
configurations in advance, and subpopulation-based adapta-
tion. Subsequently, the detailed algorithms of EBADE are
explained.

Concept

Usually, the effectiveness of algorithmic parameter configu-
rations cannot be estimated without using them, because it
depends on the current search dynamics and random factors.
However, the idea of EBADE is to produce good parame-
ter configurations by emulating the sampling mechanism of
SAEA without consuming FEs. Specifically, EBADE com-
prises the prior validation mechanism and subpopulation-
based adaptation. Our idea is based on two insights summa-
rized below.

• Generally, SAEAs first generate multiple candidate solu-
tions and estimate the quality of candidate solutions,
and then remove undesired ones to reduce FEs. When
estimating quality, SAEAs often utilize the improvabil-
ity of candidate solutions, e.g., the EI metric. However,
EBADE cannot estimate the quality of candidate solu-
tions directly due to the lack of surrogates. Instead,
EBADE utilizes parameter configurations that directly
affect solution generation. By emulating the SAEA
mechanism, EBADE generates multiple parameter con-
figurations and estimates their quality. Then, without
consuming FEs, EBADE removes less effective param-
eter configurations before generating solutions for FE.
Emulating the idea of the EI metric, EBADE selects a
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candidate parameter configuration that is likely to gen-
erate “expected-to-improve” solutions. Specifically, the
superior solution mentioned in the preceding paragraph
is set to the solution with the best fitness improvement
ratio (FIR). Since FIR represents the degree of improve-
ment in the fitness value, the solution with the best FIR
may not necessarily coincide with the solution with the
best fitness value, preventing the latter from being chosen
even if it is stuck in a local optimum. Also, by selecting
the solution with the best FIR, the various solutions that
are progressing will continue to be selected even if some
solutions in the population stagnate. Thus, our prior vali-
dationmechanism is expected to enable EBADE to guide
solutions to the “expected-to-improve” area, transcend-
ing premature convergence to the local optima.

• Although testing or validation data consist of multi-
ple samples in the ML domain, most existing adaptive
DEs utilize individual-based adaptation. In other words,
a parameter configuration is validated using only one
solution in the existing adaptive DEs. Thus, individual-
based adaptation may be inefficient in EOPs, because
a large number of FEs are consumed over multiple
generations to gain a large number of samples for a
parameter configuration during its validation. Accord-
ingly, EBADE employs subpopulation-based adaptation,
where a parameter configuration is paired with multi-
ple solutions, i.e., all solutions in a subpopulation. This
improves the validation accuracy of the effectiveness of
parameter configurations, reflecting the results of FE
by narrowing down the number of parameter config-
urations and validating each with respect to multiple
samples.Additionally, subpopulation-based adaptation is
also vital for the prior validation mechanism as one can-
didate parameter configuration is validated with respect
to multiple samples in the prior validation phase. The
subpopulation-based scheme can mitigate the possibility
of a sample moving in an unintended direction due to
random numbers, resulting in an unjustified evaluation
of parameter configurations.

Consequently, EBADE is designed to improve the effi-
ciency of adaptation using the prior validation mechanism
and subpopulation-based adaptation, emulating sample-efficient
approaches such as SAEAs without using any surrogate.

Parameter configuration vector

In EBADE, four algorithmic parameter configurations, the
mutation strategy, the crossover strategy, the scaling factor,
and the crossover rate are controlled during a run. Let θ =
[θv, θu, θF , θCR] be a parameter configuration vector that
defines the DE parameter configuration, where each variable
in θ is defined as follows:

Algorithm 3 Get trial solution
Require: a parameter configuration vector θ , a base solution x, a pop-

ulation P
1: /** Generate a mutant solution v **/

2: switch θv do

3: case 1

4: v = xbest + θF (xr1 − xr2 )

5: case 2

6: v = x + θF (xbest − x) + θF (xr1 − xr2 )

7: case 3

8: v = x + θF (xpbest − x) + θF (xr1 − xr2 )

9: case 4

10: v = xr1 + θF (xbest − xr1 ) + θF (xr2 − xr3 )

11: where xr1,2,3 , xbest , and xpbest are selected from P
12: /** Generate a trial solution u **/

13: switch θu do

14: case 1

15: u = BinomialCrossover(x, v, θCR) — see Algorithm 1

16: case 2

17: u = ExponentialCrossover(x, v, θCR) — see Algorithm 2

18: return u

• θv ∈ {1, 2, 3, 4} specifies the index of the mutation strat-
egy to be used. EBADE uses four mutation strategies,
best/1, current-to-best/1, current-to-pbest/1, and rand-
to-best/1, indexed by 1, 2, 3, and 4, respectively.

• θu ∈ {1, 2} specifies the index of the crossover strategy
to be used.Binomial and exponential crossover strategies
are used and indexed by 1 and 2, respectively.

• θF ∈ [0, 1] indicates the specific value of the scaling
factor F used in the mutation strategy specified by θv .

• θCR ∈ [0, 1] indicates the specific value of the crossover
rate CR used in the crossover strategy specified by θu .

For example, given θ = [1, 2, 0.5, 0.8], a DE algorithm uses
best/1mutationwith F = 0.5 and exponential crossoverwith
CR = 0.8. As the mutation strategy, we choose those that
accelerate convergence of the DE population the most [6],
since the rapid convergence of the population is prioritized
during the optimization of EOPs [16].

In summary, the solution-generation procedure of DE
specified with θ , i.e., the generation of trial solutions, is
described in Algorithm 3.

Overall framework

EBADEuses and subsequently optimizesM subpopulations,
P1,P2, . . . ,PM , simultaneously, where each subpopulation
size is set to a common value N . Each subpopulation Pm has
its own parameter configuration vector θm .

123



Complex & Intelligent Systems

Algorithm 4 describes the overall procedure of EBADE,
which consists of the following four components—
initialization, a search phase, post hoc validation, and prior
validation. To begin with, each subpopulation Pm and its
parameter configuration vector θm are initialized.Next, in the
search phase, DE is executed for each subpopulation with its
corresponding parameter configuration. Subsequently, post
hoc validation is performed to identify ineffective parame-
ter configurations that have failed to produce good solutions
during the search phase. Finally, ineffective parameter con-
figurations are modified in the prior validation phase into
plausibly good parameter configurations without consuming
FEs. Subsequently, EBADE returns to the search phase with
the modified parameter configurations and the three latter
phases are repeated until the termination criteria are satis-
fied.

The rest of this section describes the detailed procedure
of each phase.

Initialization

Initially, each subpopulation Pm is initialized with N initial
solutions. The initial solutions are produced using the same
method as the standard DE (see Sect. 2.1). Accordingly, sim-
ilar to existing DEs with multi-population mechanisms [22,
31, 58, 59], EBADEproduces different initial subpopulations
to boost the performancewhile preventing premature conver-
gence. Thereafter, all initial solutions are evaluated using the
objective function. Subsequently, the parameter configura-
tion vector θm for Pm is initialized as follows. The values
of θv and θu are set to random integer values sampled from
{1, 2, 3, 4} and {1, 2}, respectively. For θF and θCR, θF = 0.5
and θCR = 0.9 are used as the default configurations of stan-
dard DE [46].

Search phase

This phase conducts evolutionary search to collect multiple
validation samples and estimate the effectiveness of param-
eter configurations during the following post hoc validation
phase. To this end, each subpopulation is updated by execut-
ing the DE solution-generation process for one generation.

Lines 6-16 in Algorithm 4 describe the procedure of this
phase. ADE algorithm is executed on each subpopulation for
one generation, corresponding to the update of all N solutions
in Pm . First, EBADE constructs the whole population Pall

by concatenating all subpopulations, P1,P2, . . . ,PM . This
population Pall is used as the pool of candidate solutions in
the mutation strategy. Since this process also influences the
discovery of superior solutions, we employ an information-
sharing strategy that utilizes all possible solutions. In other
words, all possible variables in Pall, i.e., xr1,2,3 , xbest , and

Algorithm 4 EBADE
Require: problem dimension D, search space X ∈ [l j , u j ]Dj=1, sub-

population size N , the number of subpopulations M , the number of

candidate parameter configurations K

1: /** Initialization **/

2: Initialize M subpopulations, P1,P2, . . . ,PM , where each subpop-

ulation is composed of N initial solutions randomly generated in

X
3: Evaluate all initial solutions

4: Initialize M parameter configuration vectors θ1, θ2, . . . , θM

5: while termination criteria are not satisfied do

6: /** Search phase **/

7: Construct the whole population Pall = ⋃M
m=1 Pm

8: for m = 1 to M do

9: for each x ∈ Pm do

10: u ← GetTrialSolution(θm , x,Pall) — see Algorithm 3

11: Evaluate u

12: if f (u) ≤ f (x) then

13: x = u

14: end if

15: end for

16: end for

17: /** Post hoc validation phase **/

18: Construct the whole population Pall = ⋃M
m=1 Pm

19: Calculate FIR of ∀x ∈ Pall

20: Select topM solutions x∗
1 , x∗

2 , . . . , x∗
M fromPall in terms of FIR

21: � = {i ∈ {1, 2, . . . , M} | �x∗
m ∈ Pi ,m = 1, 2, . . . , M}

22: /** Prior validation phase **/

23: for each i ∈ � do

24: θ i is modified by executing PriorValidation using K — see

Algorithm 5

25: end for

26: end while

xpbest , are used while generating a mutant solution v for
x ∈ Pm , even if they belong to other subpopulations.

Next, all solutions in all subpopulations are updated fol-
lowing the original DE methodology. Specifically, for each
subpopulation Pm , each trial solution u of x is generated
using θm andPall. Then, each u is evaluated using the objec-
tive function. If the fitness value f (u) of u does not exceed
that of x, x is replaced with u. During the search phase,
N × M solutions can be sampled for each θ ; thus, exactly
N × M FEs are consumed.

Post hoc validation phase

This phase identifies good/bad parameter configurations by
estimating their effectiveness based on the results of the
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previous search phase. Good parameter configurations are
reused during the next search phase without any modifica-
tion, whereas bad ones are modified during the next prior
validation phase.

A straightforward way to define a good parameter config-
uration is in terms of its success to generate the current best
solution in terms of the objective values.Although this defini-
tion was used in our previous work [37], it may easily induce
premature convergence, as it does not consider the improve-
ment of objective values. Here, we define good parameter
configurations as “worth-to-continue” ones, which are iden-
tified as those generating solutions with high FIR values.
Specifically, suppose a solution xg is generated during the
gth generation from its corresponding parent solution xg−1,
and the FIR value for xg , denoted as δ f (xg), is calculated as

δ f (xg) = 1 − f (xg)

f (xg−1) + δC
, (1)

where δC ≥ 0 denotes a constant value to avoid division by
zero. Corresponding to a large value of δ f (xg), it is expected
that the parameter configuration vector θ used to generate xg
from xg−1 can be effective to identify further good solutions
during the next search phase. In contrast, corresponding to
a small value of δ f (xg), θ may be ineffective as it does not
contribute to discovering a good search region.

Accordingly, EBADE determines good/bad parameter
configurations using the following procedures. They are
described by the lines 17-21 in Algorithm 4. First, EBADE
reconstructs the whole populationPall by combining all sub-
populations updated during the search phase. Subsequently,
an FIR value for each solution x in Pall is calculated,
and the top M solutions having the M highest FIR values,
x∗
1 , x

∗
2 , . . . , x

∗
M , are determined. Then, a parameter config-

uration vector θm is identified as a good one if there is at
least one top solution x∗ generated by θm ; otherwise, it is
identified as a bad one. Technically, EBADE stores indices
of the bad parameter configurations in an index set of inef-
fective parameter configurations�, which is mathematically
defined as follows:

� = {i ∈ {1, 2, . . . , M} | �x∗
m ∈ Pi ,m = 1, 2, . . . , M}.

(2)

Note that EBADE utilizes FIR to determine good param-
eter configurations, but this may be hindered until solutions
begin to improve to some extent after several generations.
Other possible indicators may be required to detect good
configurations even with a small improvement, but we will
leave this for future work.

Prior validation phase

This process modifies bad parameter configurations to likely
good ones before using them in the next search phase. As
defined during post hoc validation, we consider good param-
eter configurations to be those that have generating good
solutions with the top M FIR values. Using this definition,
we modify bad parameter configurations to enable them to
generate such top solutions.

Lines 22-25 in Algorithm 4 correspond to this phase and
Algorithm 5 presents the detailed procedure of our prior vali-
dation phase. First, EBADE selects the target solution xtarget
from the solutions discovered so far. This is commonly set
for all bad parameter configurations θ i to improve the proba-
bility of generating effective parameter configurations using
xtarget repeatedly. The solution with the best FIR in Pall is
selected as the target solution. Note that the search direction
is also guided towards the best solution asmutation strategies
with high exploitation ability are utilized. Thus, the modified
parameter configuration is expected to consider the direc-
tions towards the best solution and the area that remains to
be searched, i.e., the best FIR solution.

For each bad parameter configuration indexed by i ∈ �,
EBADE randomly generates multiple parameter configura-
tion candidates and then removes less effective ones, only
retaining one. Then, the remaining candidate is replaced
with θ i . Technically, K candidate parameter configurations
θk , k = 1, 2, . . . , K are generated following the proce-
dure used during initialization, except for θF and θCR, where
K ∈ N is a hyperparameter. For each θk , its θF and θCR
are randomly selected from [0, 1]. Then, EBADE selects
one candidate parameter configuration that produces a solu-
tion closest to a target solution xtarget . In particular, for each
candidate parameter configuration θk , EBADE tests the abil-
ity of θk to generate solutions close to a target solution
xtarget . More specifically, for each solution x in its corre-
sponding subpopulation Pi , its trial solution u is generated
by the DE solution-generation process specified using θk ,
i.e., GetTrialSolution(θk, x,Pall). These sample solutions
are not evaluated using the objective function. Then, the
minimum Euclidean distance between each u and xtarget is
recorded as d(k). Finally, the index having the minimum
d(k), k = 1, 2, . . . , K , is set as k∗, and θ i is replaced with
the candidate θk∗ .

Experiments

In this section, the performance of EBADE is evaluated
on single-objective benchmark functions with restricted FE
budgets. All experiments are conducted using a Intel(R)
Core(TM) i7-10700 4.8 GHz CPU and 16 GB RAM.
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Algorithm 5 Prior validation
Require: subpopulation size N , the number of candidate parameter

configurations K

1: xtarget = arg max
x∈Pall

δ f (x)

2: Sample K random candidate parameter configurations θk

3: for k = 1 to K do

4: Generate N trial solutions u from Pi by GetTrialSolu-

tion(θk , x,Pall)

5: d(k) ← the minimum distance between each pair of u and xtarget

6: end for

7: k∗ = arg min
k∈{1,2,...,K }

d(k)

8: return θk∗

Experimental configurations

Test problems

We used 28 bound-constrained benchmark functions, F1, F2,
. . . , and F28, used in the competition on Real-Parameter
Single Objective Optimization at the IEEE Congress on
Evolutionary Computation 2013 [25]. Note that F1–F5,
F6–F20, and F21–28 are categorized as unimodal, multi-
modal, and composition functions, respectively (see [25]
for detailed definitions). The problem dimension was set to
D ∈ {10, 20, 30}. The search space of all functions was com-
monly set to x ∈ [−100, 100]D .

Comparison algorithms

We compared the performances of EBADE and four adap-
tive DEs, SHADE, jSO, CSDE, and EDEV, and four SAEAs,
GPEME, S-JADE, SAHO, and ESMDE. The brief descrip-
tions and parameter configurations of comparison algorithms
are summarized below.

• SHADE, which has been the basis of modern adaptive
DEs, employs the current-to-pbest/1 mutation strategy
and adapts F and CR based on success history mem-
ories, MF,r and MCR,r , respectively, using individual-
based adaptation. Via comparison with SHADE, the
impacts of our prior validation and subpopulation-based
adaptation mechanisms are evaluated. We used H =
100, MF,h,init = 0.5, MCR,h,init = 0.5, |Archive| =
100, pmin = 2/N , and pmax = 0.2 [50].

• jSO, which is an extension of L-SHADE [51]. Based on
a specific schedule for parameter control, jSO adapts F ,
CR, and N for individual-based adaptation. In particular,
N decreases as the number of FEs increases to evolve
more generations by the end of the search. We verify
if EBADE outperforms local search conducted by jSO

at the end of the search in moderately EOPs. We used
H = 5, MF,h,init = 0.3, MCR,h,init = 0.8, |Archive| =
N , Ninit = 25 log D3/2, Nmin = 4, pmin = 0.125, and
pmax = 0.25 [4].

• CSDE, which is one of the state-of-the-art adaptive
DEs. CSDE adapts F , CR, and the mutation strategy
for individual-based adaptation. CSDE shifts between
two mutation strategies (current-to-pbest/1 and pbest-
to-rand/1) depending on the degree of stagnation in the
search. Comparison with CSDE reveals if EBADE out-
performs state-of-the-art adaptive DEs in moderately
EOPs. We used Finit = 0.5, CRinit = 0.5, N = 100,
FP = 200, μ = 0.5, and σ = 0.1 [48].

• EDEV, which is a state-of-the-art subpopulation-based
adaptive DE. EDEV adaptively assigns JADE, CoDE,
and EPSDE to subpopulations. Thus, EDEV adapts F ,
CR, the mutation strategy, and the crossover strategy.
Comparison with EDEV is important, because both
EDEV and EBADE are subpopulation-based adaptive
DEs that adapt four parameter configurations of DE.
We used λ1 = λ2 = λ3 = 0.1, λ4 = 0.7, ng = 20,
(JADE: μF,ini t = 0.5, μCR,ini t = 0.5, c = 0.1, pmin =
0.05, pmax = 0.2), (CoDE:{F,CR} ∈ {{1.0, 0.1},
{1.0, 0.9}, {0.8, 0.2}}, {rand/1/bin, rand/2/bin, current-
to-rand/1}), (EPSDE:PF = {0.4, 0.5, . . . , 0.9}, PCR =
{0.1, 0.2, . . . , 0.9}, Pv = {rand/1, best/2, current-to-
rand/1}) [59].

• GPEME, which is one of themost popular and frequently
compared SAEAs, employs DE and the Kriging model.
Thus, GPEME is the standard of SAEA and comparison
with it is essential. We used N = 100, F = 0.8,CR =
0.8, τ = 100, λ = 50, l = 4, ω = 2, regression =
zero-order, correlation=Gaussian, θ ∈ [10−5, 102], and
θini t = 10−2 [26].

• S-JADE, which is a state-of-the-art SAEA, consists of
modified JADE with multiple RBFN models. By com-
paring with S-JADE, we compare the performances of
EBADE and state-of-the-art SAEAs with DE parameter
configuration adaptation in moderately EOPs. We used
N = 100, Fout = 0.5, CRout = 0.75, ppbestout = 0.05,
Fin = 0.5, CRout = 0.5, ppbestin = 0.1, stdF = 0.1,
stdCR = 0.1, L = 10, ε = 0.01, c = 0.1, FEmaxin =
2, 000, kernel = cubic, and r = rand(0, 1.25) [7].

• SAHO, which is also a state-of-the-art SAEA, employs
DE and TLBO as optimizers and the RBFN model as
a surrogate. In addition to SAHO being one of the
state-of-the-art SAEAs, comparison with GPEME and
SAHO provides a relative performance comparison of
EBADE for different ML models used in these SAEAs.
We used N = 100, F = 0.9, CR = 0.5, K = 30,
neighbor = 5D, and kernel = cubic [40].

• ESMDE, which adapts DE configuration during screen-
ing of the solution by the Kriging model. The candidate
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configurations are two mutation strategies (rand/1 and
current-to-rand/1), two crossover strategies (binomial
and exponential), F ∈ [0.5, 1.0], and CR ∈ [0.0, 1.0].
By comparing with ESMDE, we verify if the adapta-
tion mechanism of EBADE outperforms SAEAs with
DE parameter adaptation in moderately EOPs. We used
c = 10, regression= zero-order, correlation=Gaussian,
θ ∈ [10−5, 102], and θini t = 10−2 [34].

Parameter configuration of EBADE

The size of each subpopulation was taken to be N = 4,
the number of subpopulations was M = 25, the number of
candidate configurations was K = 6, and the parameter in
the current-to-pbest/1 is p = 0.5. Thus, the size of the whole
population Pall is N × M = 100, and these configurations
are identical to those in the compared adaptive DEs above.
Note that δC in Eq. (1) was not needed, because the objective
values except at the global optimum were non-negative. The
objective value at the global optimum of each function was
0, but no trial reached the global optimum.

Evaluation scheme

All algorithms were forcibly terminated when the number of
FEs reached its maximum budget FEmax, including FEs used
for the initialization phase. The performance of algorithms
was evaluated in terms of the best objective value discovered
at FEmax, and their mean values over 21 independent trials
were reported. The Wilcoxon signed-rank test was applied
to identify significant differences with a significance level
of p < 0.05. Additionally, the average runtimes of all algo-
rithms to complete one trial were compared.

We set FEmax = 6000 as a default value as moderately
restricted budgets of FEs were assumed. However, additional
results corresponding to 2000–10,000 FEs are presented in
Sect. 4.3 to investigate the scalability of EBADEwith respect
to the number of FEs.

Results

Tables 3, 4, and 5 summarize the performances recorded cor-
responding to 6000 FEs for problems with D ∈ {10, 20, 30},
respectively. The best and worst performances are high-
lighted in bold and italic, respectively. In the tables, “+”,
“−”, and “∼” indicate that the performance of a compared
algorithm is statistically better than, statistically worse than,
and comparable to that of EBADE, respectively. Further, the
average rank and the overall statistical results, i.e., the counts
of +/ − / ∼, are summarized at the bottom of each table.

As is evident from Table 3, EBADE outperformed adap-
tive DEs (SHADE, jSO, CSDE, and EDEV) and one SAEA
(ESMDE) significantly on multiple problem instances with

D = 10. In particular, the performance of EBADE was sta-
tistically better than those of adaptive DEs on at least 14
problem instances. In addition, EBADE exhibited compa-
rable performance with respect to three SAEAs (GPEME,
S-JADE, and SAHO). In particular, the performance of
EBADE was statistically better than SAEAs on at least
nine problem instances, and there were only a maximum
of six statistically worse cases. Consequently, EBADE was
assigned the best rank, outperforming the consideredSAEAs.
This indicates a benefit of auto-tunable approaches in solv-
ing EOPs—the performance of EBADE is less problem-
dependent owing to adaptive control of parameter config-
urations during a run. Although the performance of SAEAs
could be improved via fine-tuning, it is usually hindered in
EOPs.

Evenwhen D is increased to 20 and 30, EBADE remained
effective, as evidenced by Tables 4 and 5. The performance
of EBADE was better than those of adaptive DEs and highly
competitive with SAEAs on several problem instances. For
D = 30, the effectiveness of EBADE was slightly poorer, as
GPEME outperformed EBADE on certain problems. How-
ever, EBADE was assigned the best rank, indicating that it
performedwell on average. All four adaptive EAs considered
for comparison were assigned worse ranks than the SAEAs,
except for ESMDE, as they are not designed for restricted
FEs. These observations empirically corroborate the effec-
tiveness of our emulation-based adaptation mechanism.

Table 6 presents the average algorithmic runtimes required
to complete one trial corresponding to each problem dimen-
sion. EBADE required the second-highest runtime among
the five adaptive DEs, but the differences were only a few
seconds at most. On the other hand, EBADE outperformed
the SAEAs in terms of speed; the runtime of EBADE was
smaller than that of the SAEAs by at least an order of two.

In summary, overall results suggest that, without any help
of surrogate models, EBADE performs comparably with
SAEAswhile operatingmuch faster than them. This observa-
tion empirically suggests that the proposed emulation-based
adaptation enables the adaptive DE mechanism to acceler-
ate its evolutionary search under a restricted number of FEs,
demonstrating the possibility to realize computationally effi-
cient and auto-tunable optimizers for solving moderately
EOPs.

Additional results

To investigate the scalability of EBADE with respect to
the number of FEs, we conducted additional experiments
with different values of FEmax under the same experimental
environment as in Sect. 4.1, except for FEmax. Specifically,
FEmax was set to {2000, 4000, 8000, 10,000} in addition to
its default value of 6000. Here, we report the average ranks
and the overall statistical results.
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Table 6 Average runtime [sec] required to complete one trial (FEmax = 6000)

D EBADE SHADE jSO CSDE EDEV GPEME S-JADE SAHO ESMDE

10 1.42E+01 1.18E+01 6.95E+00 1.35E+01 1.58E+01 3.30E+03 1.04E+05 4.13E+04 2.98E+03

20 1.45E+01 1.18E+01 6.98E+00 1.37E+01 1.80E+01 1.54E+04 1.11E+05 7.71E+04 1.53E+04

30 1.55E+01 1.21E+01 7.23E+00 1.44E+01 1.68E+01 3.34E+04 7.72E+04 8.65E+04 3.67E+04

Table 7 reports the statistical results summarized as the
counts of +/ − / ∼. Figure 1 depicts the average ranks of
all nine algorithms. Overall, the performance of EBADEwas
statistically better than those of all the four adaptiveDEs even
when FEmax was decreased/increased from its default value
6000. The superiority of EBADE over the four adaptive DEs
is also corroborated by Fig. 1, since EBADE was assigned
the best rank among five adaptive DEs corresponding to all
problem dimensions and allFEmax cases. These results prove
that EBADE was successfully adapted to EOPs.

When FEmax was 2000, three SAEAs—GPEME, S-
JADE, and SAHO—outperformed EBADE corresponding
to all problem dimensions, as the number of “+” was
sufficiently larger than that of “−”. This result clearly
demonstrated the effectiveness of surrogate-assisted search
on highly restricted FE budgets. However, when FEmax was
increased to 4000, the performance of EBADE became com-
petitive to those of the SAEAs, except in the 30-dimensional
cases. When FEmax was further increased to 8000 and
10,000, the effectiveness of EBADE was highlighted even
more. These tendencies can be also observed in Fig. 1—
EBADE was always assigned the second or third rank when
FEmax ≤ 4000, and its rank improved to first for FEmax ≥
6000. On the other hand, the ranks of SAEAs gradually
decreased with the increase of FEmax; this indicates stag-
nation in SAEA performances. This is because SAEAs tend
to strugglewith premature convergencewith a higher number
of FEs. As observed in [47, 60], generally, surrogate-assisted
searches provide a strong exploitation bias to promote evolu-
tionary search under very restricted budgets of FEs.However,
this degrades the diversity of solutions with a higher number
of FEs, degrading the search performance and the quality
of (global) surrogates. Consequently, as shown in Fig. 1,
SAEAs performed very well for very restricted budgets of
FEs; however, their performances gradually degraded with
the increase of FEs. EBADE was assigned to the best rank
for all dimensions when FEmax ≥ 6000, as shown in Fig. 1.
Thus, this observation indicates that EBADE is well scaled
to the increase of the problem dimensions D on moderately
EOPs. A possible reason for this is that EBADE can pos-
sess a better diversity of solutions than that of SAEAs; after
the adaptation of parameter configurations, EBADE gen-
erates solutions similar to the standard DEs without any
pre-screening process using surrogates.

The following differences were identified between the
different algorithmic mechanisms. The relatively simple
algorithm of SHADE ensured its scalability with respect to
D, since the average rank increased slightly as D increased,
as in Fig. 1. jSO also exhibited improved performance—it
ranked second among adaptive DEs and its average rank was
slightly higher than those of all SAEAs when FEmax ≥ 8000
(D = 10) and FEmax = 10,000 (D = 20), as in Fig. 1. This
was attributed to the mechanism by which jSO reduces the
population size towards each set FEmax to gain the number
of solution evolution. If this mechanism were incorporated
into EBADE, it may further improve its performance. How-
ever, EBADE already outperformed SHADE and jSO based
solely on the prior validation mechanism and subpopulation-
based adaptation. As depicted in Fig. 1, the average rank of
CSDE increased with an increase in FEmax for all dimen-
sions, but the statistical test results obtained in comparison
with EBADE did not improve, as presented in Table 7.
Thus, the state-of-the-art CSDE is specialized for cases with
plentiful FE budgets. EDEV seemed to consume a large num-
ber of FEs to improve performance, because it has a huge
search space of parameter configurations. In comparisonwith
SAEAs, EBADE was highly competitive beyond the type of
ML used in compared SAEAs, since its rank was higher than
those of GPEME and SAHO, at least for FEmax ≥ 6000,
as in Fig. 1. Although S-JADE and ESMDE adaptively con-
trol DE parameter configurations, further consideration may
be required in the combined implementation of SAEAs and
adaptation methods to solve moderately EOPs effectively,
especially owing to the low rank of ESMDE in Fig. 1.

In summary, the compared SAEAs exhibited excellent
performances when FEmax = 2000, but EBADE derived
good performances when FEmax ≥ 6000. This observation
shows the effectiveness of EBADE on moderately EOPs.

Discussion

In this section, the results of ablation studies are reported to
confirm the effectiveness of themain components ofEBADE.
First, we discuss the effect of controlling the DE param-
eter configurations in moderately EOPs. Subsequently, the
effectiveness of the prior validation and subpopulation-based
adaptation is discussed. Finally, the adaptation results of
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Table 7 Statistical results (the count of +/ − / ∼) for 2000, 4000, 6000, 8000, and 10,000 FEs

a) D = 10
FEs vs SHADE vs jSO vs CSDE vs EDEV vs GPEME vs S-JADE vs SAHO vs ESMDE

2000 0/24/ 4 7/ 9/12 0/26/ 2 0/26/ 2 17/ 6/ 5 14/ 4/10 10/ 5/13 0/25/ 3

4000 0/23/ 5 5/15/ 8 0/26/ 2 0/26/ 2 7/ 9/12 5/ 8/15 7/13/ 8 0/24/ 4

6000 0/24/ 4 5/14/ 9 0/24/ 4 0/27/ 1 4/13/11 4/ 9/15 6/17/ 5 0/24/ 4

8000 1/24/ 3 6/13/ 9 1/24/ 3 0/26/ 2 4/16/ 8 3/ 9/16 2/18/ 8 0/24/ 4

10,000 0/24/ 4 6/13/ 9 0/25/ 3 0/26/ 2 4/18/ 6 3/ 9/16 3/19/ 6 0/24/ 4

b) D = 20
FEs vs SHADE vs jSO vs CSDE vs EDEV vs GPEME vs S-JADE vs SAHO vs ESMDE

2000 0/22/ 6 0/ 8/20 0/25/ 3 0/24/ 4 18/ 6/ 4 16/ 6/ 6 18/ 6/ 4 0/24/ 4

4000 0/24/ 4 4/13/11 0/25/ 3 0/25/ 3 12/ 8/ 8 8/10/10 11/12/ 5 0/25/ 3

6000 0/21/ 7 5/14/ 9 0/25/ 3 0/25/ 3 6/12/10 7/11/10 10/14/ 4 0/26/ 2

8000 1/21/ 6 7/14/ 7 0/23/ 5 0/25/ 3 4/11/13 6/11/11 8/16/ 4 0/26/ 2

10,000 2/19/ 7 8/14/ 6 1/21/ 6 0/25/ 3 3/10/15 6/10/12 7/16/ 5 0/25/ 3

c) D = 30
FEs vs SHADE vs jSO vs CSDE vs EDEV vs GPEME vs S-JADE vs SAHO vs ESMDE

2000 0/22/ 6 0/13/15 0/26/ 2 1/25/ 2 18/ 6/ 4 17/ 5/ 6 18/ 6/ 4 0/25/ 3

4000 1/18/ 9 3/14/11 0/26/ 2 0/26/ 2 16/ 6/ 6 13/ 9/ 6 12/ 8/ 8 0/25/ 3

6000 1/16/11 6/16/ 6 0/26/ 2 0/26/ 2 11/ 6/11 7/11/10 10/ 9/ 9 0/26/ 2

8000 5/13/10 5/14/ 9 1/23/ 4 0/25/ 3 10/ 9/ 9 8/12/ 8 10/13/ 5 0/26/ 2

10,000 7/14/ 7 7/14/ 7 1/22/ 5 0/25/ 3 7/10/11 6/13/ 9 9/13/ 6 0/24/ 4

Fig. 1 Average rank of all nine
algorithms over the number of
FEs
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the DE parameter configurations are investigated. Experi-
mental environments identical to those reported in Sect. 4.1
are used with FEmax ∈ {2000, 4000, 6000, 8000, 10,000}
unless stated otherwise.

Impact of parameter adaptation inmoderately EOPs

We empirically demonstrate that controlling the DE param-
eter configuration is crucial to improve the performance of
adaptive DEs even for moderately EOPs. To this end, we
compared the performances of EBADEand variousDEswith
fixed parameter configurations. In particular, we introduced
eight DE variants with different combinations of muta-
tion and crossover strategies; best/1/bin (b/1/b), current-to-

best/1/bin (cb/1/b), current-to-pbest/1/bin (cpb/1/b), rand-
to-best/1/bin (rb/1/b),best/1/exp (b/1/e), current-to-best/1/exp
(cb/1/e), current-to-pbest/1/exp (cpb/1/e), and rand-to-best/
1/exp (rb/1/e), where bin and exp denote binomial and expo-
nential crossover, respectively; and F = 0.5 and CR = 0.9
were used for all variants. For cpb/1/b and cpb/1/e, we used
p = 0.5.

Table 8 summarizes the statistical results in terms of the
counts of +/ − / ∼, where “+”, “−”, and “∼” indicate
that the performance of a DE variant is statistically bet-
ter than, statistically worse than, and comparable with that
of EBADE, respectively. Further, Fig. 2 depicts the aver-
age ranks. In Table 8, two DE variants using cb/1/b and
rb/1/b were observed to outperform EBADE on several prob-

123



Complex & Intelligent Systems

Table 8 Statistical results (the
count of +/ − / ∼) for 2000,
4000, 6000, 8000, and 10,000
FEs in comparison with eight
DE variants with fixed
parameter configurations

a) D = 10
FEs vs b/1/b vs cb/1/b vs cpb/1/b vs rb/1/b vs b/1/e vs cb/1/e vs cpb/1/e vs rb/1/e

2000 8/ 6/14 8/ 8/12 0/17/11 12/ 8/ 8 4/ 7/17 0/13/15 0/25/ 3 2/13/13

4000 3/12/13 7/11/10 1/15/12 11/10/ 7 5/13/10 0/17/11 0/22/ 6 0/16/12

6000 1/14/13 7/11/10 2/16/10 11/10/ 7 4/16/ 8 0/18/10 0/22/ 6 3/18/ 7

8000 0/13/15 8/14/ 6 4/16/ 8 9/14/ 5 5/16/ 7 2/18/ 8 0/21/ 7 4/19/ 5

10,000 0/13/15 8/14/ 6 5/16/ 7 9/13/ 6 5/16/ 7 2/18/ 8 0/21/ 7 4/17/ 7

b) D = 20
FEs vs b/1/b vs cb/1/b vs cpb/1/b vs rb/1/b vs b/1/e vs cb/1/e vs cpb/1/e vs rb/1/e

2000 7/ 8/13 11/ 3/14 0/17/11 15/ 3/10 2/13/13 0/22/ 6 0/24/ 4 0/16/12

4000 2/18/ 8 5/10/13 1/15/12 11/ 7/10 1/14/13 0/19/ 9 0/25/ 3 1/17/10

6000 1/18/ 9 7/14/ 7 2/15/11 7/11/10 3/14/11 1/16/11 0/25/ 3 2/14/12

8000 1/22/ 5 6/17/ 5 3/16/ 9 7/16/ 5 6/14/ 8 2/14/12 0/24/ 4 7/15/ 6

10,000 1/21/ 6 6/18/ 4 5/19/ 4 6/17/ 5 6/14/ 8 3/15/10 1/23/ 4 7/16/ 5

c) D = 30
FEs vs b/1/b vs cb/1/b vs cpb/1/b vs rb/1/b vs b/1/e vs cb/1/e vs cpb/1/e vs rb/1/e

2000 6/11/11 12/ 4/12 0/16/12 15/ 3/10 0/19/ 9 0/24/ 4 0/25/ 3 0/24/ 4

4000 2/19/ 7 3/10/15 2/14/12 8/ 6/14 0/21/ 7 0/24/ 4 0/25/ 3 0/22/ 6

6000 2/22/ 4 6/19/ 3 3/17/ 8 7/15/ 6 0/16/12 0/19/ 9 0/26/ 2 2/16/10

8000 1/22/ 5 5/19/ 4 4/17/ 7 5/17/ 6 1/15/12 1/18/ 9 0/25/ 3 3/16/ 9

10,000 1/22/ 5 5/19/ 4 3/16/ 9 5/17/ 6 1/14/13 2/16/10 0/21/ 7 3/12/13

lem instances, with FEmax ≤ 4000 as a sufficiently large
number of “+”. However, when FEmax was increased to
6000, the performance of EBADE was gradually improved.
When FEmax was further increased to 8000 and 10,000,
EBADE statistically outperformed all DE variants on at
least 13 problem instances. Almost an identical trend was
observed in Fig. 2. Specifically, although the average rank of
EBADE was sometimes below those of cb/1/b and rb/1/b for
FEmax ≤ 4000, EBADE always ranked first for FEmax ≥
6000.

These results indicate that the configurations of cb/1/b and
rb/1/b, i.e., providing a strong bias for exploitation, enhanced
DE performance when FEmax was highly restricted; how-
ever, this benefit may be less important as SAEAs performed
well under such restricted budgets. An important drawback
of using these settings was observed to be premature conver-
gence when FEmax was increased to, for example, 6000 or
even 10,000. Actually, the average ranks of cb/1/b and rb/1/b
were rapidly degraded asFEmax was increased, as depicted in
Fig. 2. In contrast, EBADEperformedwell by controlling the
DE parameter configurations, especially for FEmax ≥ 6000,
i.e., under moderately restricted FE budgets.

General trends of fixed DE variants are as follows. When
FEmax was increased from 2000 to 10,000, the average
ranks of DE variants using the binomial crossover strategy,
except for cpb/1/b, i.e., b/1/b, cb/1/b, and rb/1/b, continued
to decrease, while those of cpb/1/b or DE variants using the

exponential crossover strategy, i.e., b/1/e, cb/1/e, cpb/1/e, and
rb/1/e, continued to improve. EBADE was assigned consis-
tently to good ranks. This result shows that the adaptation
of the DE parameter configurations was effective in solving
moderately EOPs.

Impact of adaptation of DE parameters

EBADE is designed to simultaneously adapt the DE param-
eter configurations (F,CR, and the mutation and crossover
strategies) to determine good parameter configurations from
a variety of candidates. We further validate the effectiveness
of this strategy by comparing EBADE with its variant using
fixed values of θF and θCR, denoted as EBADE-fixFCR.

Specifically, EBADE-fixFCR is designed to always use
θF = 0.5 and θCR = 0.9 [46]; it tunes only the muta-
tion and crossover strategies. Table 9 presents the statistical
results summarized as the counts of +/− / ∼ with FEmax ∈
{2000, 4000, 6000, 8000, 10,000}. In the table, “+”, “−”,
and “∼” indicate that the performance of EBADE-fixFCR
is statistically better than, statistically worse than, and com-
parable to that of EBADE, respectively.

When FEmax was 2000, EBADE-fixFCR statistically
outperformed EBADE on more than seven problems for all
problem dimensions. This indicates that the recommended
values of θF and θCR boost the convergence speedofEBADE-
fixFCR under the restricted budgets of FEs, by reducing
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Fig. 2 Average ranks of fixed
DE variants and EBADE over
the number of FEs
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Table 9 Statistical results (the count of +/ − / ∼) for 2000, 4000,
6000, 8000, and 10,000 FEs in comparison with EBADE and a variant
where θF and θCR are fixed to 0.5 and 0.9, respectively

FEs D = 10 D = 20 D = 30

2000 8/ 4/16 11/ 3/14 11/ 4/13

4000 9/11/ 8 10/ 6/12 10/ 6/12

6000 8/12/ 8 7/ 8/13 6/10/12

8000 10/14/ 4 6/12/10 5/10/13

10,000 10/13/ 5 6/14/ 8 5/12/11

the search space of parameter configurations. However, with
FEmax ≥ 6000, the number of “−” was larger than that of
“+” for all D. This is highlighted particularly for D = 20 and
30. For example, EBADE outperformed EBADE-fixFCR
on 12 problems with D = 20,FEmax = 8000 while reduc-
ing the number of “+”. Consequently, the adaptation of DE
parameter configurations including θF and θCR is important
to enhance the performance of EBADE in moderately EOPs.

Parameter analysis for the number of candidate
configurations

Now,we evaluate the effectiveness of the prior validation pro-
cess. To this end,we introduce anEBADEvariantwithout the
prior validation process, which can be implemented by set-
ting K to 1. EBADE with K = 1 always generates only one
candidate parameter configuration, and thus randomly selects
a parameter configuration. Further, a sensitivity analysis is
performed for K . In particular, we evaluate the performance
of EBADE with K ∈ {1, 2, 4, 8, 10} in addition to its default
value, six.

Table 10 summarizes the statistical results of the counts
of +/ − / ∼, where “+”, “−”, and “∼” indicate that
the performance of an EBADE variant is statistically bet-
ter than, statistically worse than, and comparable with that
of EBADE with the default value K = 6, respectively. To
denote the variant without the prior validation process, “(w/o
PV)” is appended to K = 1 in the table.As shown in the table,

the performance of EBADE was sensitive to the parameter
K , because the statistical results changed dramatically as K
shifted. In particular, when prior validation was excluded
(K = 1), the performance of EBADE degraded significantly
on multiple problem instances compared to EBADE using
the default value K = 6, confirming the effectiveness of
the prior validation process. Moreover, K = 2 was inap-
propriate, since EBADE with the default setting (K = 6)
statistically outperformed that with K = 2. Thus, two candi-
dates of parameter configurations are insufficient to conduct
prior validation efficiently. When the value of K increased
to 10, the performance of EBADE slightly improved for
FEmax ≤ 4000; however, it degraded for FEmax ≥ 8000.
This is because a large value of K tends to increase the
exploitation bias in the search, and thereby EBADEmay suf-
fer frompremature convergence. Specifically, when the value
of K increases, a greater variety of parameter configurations
is sampled and then EBADE tends to select DE parameter
configurations that generate overly similar solutions to the
target solution.

Parameter analysis for the number of
subpopulations

We also validate the effectiveness of subpopulation-based
adaptation. For this purpose, an EBADE variant that adapts
DEs for individual-based adaptation is prepared. This vari-
ant can be implemented by setting M = 100 and N = 1.
The size of the whole population of this variant is the same
as the original EBADE; N × M = 4 × 25 = 100 and
N×M = 1×100 = 100 for EBADEand this variant, respec-
tively. Thus, they can be fairly compared. The number of top
solutions in the post hoc validation phase, described in line 20
in Algorithm 4, is set to 25 for this variant, as all parameter
configurations remain constant throughout the search stage
otherwise. Additionally, we conduct a sensitivity analysis for
M . Specifically,we evaluate the performanceofEBADEwith
M ∈ {2, 4, 5, 10, 20, 50, 100} in addition to its default value
25. For these M , N was set to N ∈ {50, 25, 20, 10, 5, 2, 1},
respectively, to ensure that the population size remains 100.
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Table 10 Statistical results (the
count of +/ − / ∼) for 2000,
4000, 6000, 8000, and 10,000
FEs in comparison with
EBADE with
K ∈ {1, 2, 4, 8, 10}

a) D = 10

FEs vs K = 1 (w/o PV) vs K = 2 vs K = 4 vs K = 8 vs K = 10

2000 0/16/12 0/13/15 0/ 2/26 1/ 0/27 3/ 0/25

4000 0/17/11 0/12/16 0/ 7/21 2/ 1/25 5/ 1/22

6000 0/16/12 0/13/15 1/ 5/22 2/ 2/24 3/ 3/22

8000 1/15/12 1/11/16 2/ 6/20 4/ 2/22 3/ 3/22

10,000 2/10/16 2/ 9/17 2/ 5/21 3/ 2/23 3/ 4/21

b) D = 20

FEs vs K = 1 (w/o PV) vs K = 2 vs K = 4 vs K = 8 vs K = 10

2000 0/16/12 0/15/13 0/ 1/27 2/ 0/26 3/ 0/25

4000 0/18/10 0/13/15 0/ 3/25 3/ 0/25 4/ 0/24

6000 0/13/15 1/13/14 0/ 1/27 3/ 1/24 3/ 2/23

8000 1/11/16 1/ 8/19 1/ 1/26 2/ 2/24 1/ 2/25

10,000 1/ 8/19 1/ 7/20 2/ 1/25 2/ 2/24 1/ 5/22

c) D = 30

FEs vs K = 1 (w/o PV) vs K = 2 vs K = 4 vs K = 8 vs K = 10

2000 1/17/10 0/10/18 1/ 3/24 2/ 0/26 5/ 0/23

4000 1/15/12 0/ 9/19 0/ 0/28 2/ 1/25 3/ 0/25

6000 0/14/14 0/11/17 0/ 0/28 1/ 2/25 1/ 1/26

8000 0/ 9/19 0/ 5/23 0/ 0/28 1/ 2/25 1/ 2/25

10,000 3/ 7/18 1/ 5/22 0/ 0/28 0/ 2/26 2/ 3/23

Table 11 presents the statistical results in terms of the
count of +/ − / ∼. The symbols are defined as in the pre-
vious subsection, where the default value of M is M = 25.
To highlight the variant with individual-based adaptation,
“(Indiv.)” is appended to M = 100 in the table. When
individual-based adaptation was conducted (M = 100),
the performance of EBADE degraded significantly on mul-
tiple problem instances compared with EBADE using the
default value M = 25, confirming the effectiveness of the
proposed subpopulation-based adaptation. This is because
the proposed subpopulation-based adaptation can improve
the validation accuracy of the effectiveness of parameter
configuration by validating those with multiple samples.
Specifically, the subpopulation-based adaptation can miti-
gate the risk of a sample moving in an unintended direction
due to random numbers, resulting in an unjustified evaluation
of parameter configurations. However, the individual-based
adaptation is designed to validate a parameter configuration
using a single sample, and thereby, this risk should occur
frequently. Accordingly, EBADE performedwell using good
parameter configurations, which were well detected by the
subpopulation-based adaptation.

Moreover, EBADE with M ∈ {2, 4, 5} should be avoided
as they statistically underperformedcompared toEBADEwith
the default setting (M = 25). These results suggest that the
number of parameter configurations tested in parallel should

be greater than five and the number of solutions validating
one parameter configuration should be less than 20. Fur-
ther, EBADE with M = 50 is also inappropriate, because
two solutions are insufficient to validate one parameter con-
figuration. Increasing the value of N while decreasing M
can improve this validation accuracy, because the number
of validation samples, N , increases; however, the number of
parameter configurations decreases, leading to a poor diver-
sity of solutions. On the other hand, increasing M (and thus
decreasing N ) can improve the diversity of solutions; how-
ever, less effective configurations may be used owing to low
validation accuracy. Thus, it is important to use a parameter
settingof {N , M} that balances this trade-off.Our experimen-
tal result suggests that {N , M} = {10, 10}, {5, 20}, {4, 25}
produces a good balance, as EBADE with these settings per-
formed well.

Adaptation results

Finally, we verify whether the high performance of EBADE
was achieved after EBADE performed adaptation without
biasing the use of only certain DE parameter configurations.
Specifically, for each element of the parameter configura-
tions, i.e., the scaling factor F , the crossover rate CR, the
mutation strategy, and the crossover strategy, we enumerated
the number of times the subpopulations of EBADE used each
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Table 11 Statistical results (the count of +/ − / ∼) for 2000, 4000, 6000, 8000, and 10,000 FEs in comparison with EBADE with M ∈
{2, 4, 5, 10, 20, 50, 100}
a) D = 10

FEs vs M = 2 vs M = 4 vs M = 5 vs M = 10 vs M = 20 vs M = 50 vs M = 100 (Indiv.)

2000 0/ 7/21 0/ 6/22 0/ 4/24 2/ 1/25 0/ 1/27 1/ 1/26 0/ 0/28

4000 1/12/15 1/ 8/19 0/ 5/23 1/ 1/26 0/ 1/27 0/ 3/25 1/ 3/24

6000 0/15/13 0/10/18 0/ 7/21 0/ 1/27 0/ 1/27 0/ 3/25 1/ 4/23

8000 0/12/16 0/ 7/21 0/ 7/21 0/ 0/28 0/ 0/28 1/ 4/23 0/ 6/22

10,000 2/11/15 0/ 8/20 0/ 6/22 0/ 0/28 0/ 1/27 0/ 5/23 0/ 6/22

b) D = 20

FEs vs M = 2 vs M = 4 vs M = 5 vs M = 10 vs M = 20 vs M = 50 vs M = 100 (Indiv.)

2000 0/10/18 0/ 1/27 0/ 4/24 0/ 0/28 0/ 0/28 1/ 4/23 0/ 1/27

4000 0/13/15 0/ 2/26 1/ 4/23 0/ 1/27 1/ 1/26 0/ 1/27 1/ 1/26

6000 0/ 9/19 0/ 2/26 1/ 3/24 2/ 1/25 2/ 1/25 0/ 2/26 1/ 3/24

8000 0/ 8/20 1/ 5/22 1/ 3/24 1/ 0/27 2/ 0/26 0/ 2/26 0/ 5/23

10,000 1/ 6/21 1/ 7/20 1/ 4/23 2/ 1/25 1/ 1/26 0/ 2/26 0/ 4/24

c) D = 30

FEs vs M = 2 vs M = 4 vs M = 5 vs M = 10 vs M = 20 vs M = 50 vs M = 100 (Indiv.)

2000 0/ 8/20 0/ 5/23 0/ 3/25 3/ 1/24 1/ 1/26 0/ 1/27 2/ 2/24

4000 0/ 9/19 0/ 2/26 0/ 2/26 0/ 1/27 1/ 1/26 0/ 1/27 1/ 1/26

6000 0/10/18 0/ 4/24 0/ 4/24 0/ 1/27 0/ 1/27 0/ 3/25 1/ 3/24

8000 1/12/15 1/ 4/23 1/ 4/23 0/ 1/27 0/ 1/27 0/ 2/26 1/ 6/21

10,000 1/10/17 1/ 4/23 2/ 4/22 0/ 1/27 0/ 0/28 0/ 2/26 1/ 5/22

candidate within 10,000 FEs, and reported it as a ratio. For
F and CR, the domains of definition F,CR ∈ [0, 1] were
divided into five ranges with widths of 0.2, and the number
of samples was examined for each range.

Figure 3 summarizes the ratio of each candidate used by
problem function and the dimension. Because the selected
ratio did not depend on D significantly, the results are
reported with D ∈ {10, 30} and those with D = 20 are
omitted. As illustrated in this figure, EBADE selected vari-
ous parameter configurations of F ,CR, and the mutation and
crossover strategies over the search process. As in Fig. 3a),
values of the scaling factor F in [0.0, 0.2] were most fre-
quently used, while higher values like F ∈ (0.8, 1.0] were
less frequently used. This may be attributed to premature
convergence to the local optima induced by larger values or
slow convergence as the solutions continue to move widely
through the search space. On the other hand, larger crossover
rate values CR were often selected, as illustrated in Fig. 3b),
especially in unimodal functions, i.e., F1–F5. In other words,
mutant solutions generated with mutation strategies to accel-
erate convergence should be actively utilized in EOPs. The
best/1 mutation strategy was the most selected, as depicted
in Fig. 3c). This tendency is natural, since the best/1 strategy
exhibits the strongest exploitation ability, which is suitable

for EOPs.However, the other strategieswere used adequately
to maintain the diversity of solutions and the combined use
of these four strategies contributed to the high performance
of EBADE, which can be also confirmed in the comparison
between EBADE and DE with best/1/bin or best/1/exp in
Sect. 5.1. In Fig. 3 d), the binomial crossover strategy was
used slightly more. This tendency was reinforced as D was
increased. Since the importance of solution diversity became
more notable as D was increased, the binomial strategy,
which conducts crossover more uniformly, was more suit-
able. In summary, EBADE exhibited high performance by
selecting more candidates appropriate for EOPs. However, it
avoided heavy bias by adaptively selecting all of them.

Conclusions

In this paper,we introduced a new adaptiveDEvariant named
emulation-based adaptive DE (EBADE). An adaptive EA for
EOPs with moderately restricted budgets was developed for
the first time by emulating the principle of sample-efficient
approaches, e.g., SAEAs. Specifically, EBADE is character-
ized by prior validation and subpopulation-based adaptation;
emulating the EI-based solution screening with surrogates
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b-1) D = 10 b-2) D = 30

c) Mutation strategy
c-1) D = 10 c-2) D = 30

d) Crossover strategy
d-1) D = 10 d-2) D = 30

Fig. 3 Adaptation results obtained from EBADE

in SAEAs. EBADE pre-screens for expected improvements
from candidate DE parameter configurations before using
them without any surrogate. It adopts a multi-population
mechanism and each parameter configuration is assigned to
a subpopulation to determine the effectiveness of parame-
ter configurations accurately by validating one configuration
with respect to multiple solutions. The experimental results

obtained inmoderately expensive cases demonstrated the sta-
tistically significant superiority of EBADE among popular
and modern adaptive DEs. Additionally, EBADE was also
highly competitive with state-of-the-art SAEAs in moder-
ately EOPs; while SAEAs induced premature convergence,
EBADE continued to improve in performance with the short-
est runtime. Consequently, this paper contributes to solving
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moderately EOPs with high-performance, computationally
efficient, and auto-tunable approaches.

Despite the effectiveness of EBADE, some possible draw-
backs can be pointed out. First, EBADE employs FIR to
detect good parameter configurations, but this may be hin-
dered until EBADE discovers good solutions. Accordingly,
we will explore alternative indicators instead of FIR to detect
good parameter configurations even with a small improve-
ment in fitness values. Second, the Euclidean distance is
utilized in the prior validation phase, but it may not be
adequate when the problem dimension increases. Thus, we
will consider other metrics such as the Mahalanobis dis-
tance and cosine similarity to improve the scalability of
EBADE to problem dimensions. Finally, we plan to extend
this framework for multi-objective optimization problems
and compare the performances of the extended EBADE and
multi-objective SAEAs.
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