Kei Nishihara
Kei Nishihara
Home
Posts
Events
Experience
Publications
Awards
Grants & Scholarships
Contact
Light
Dark
Automatic
English
日本語
Scalarization Function
Evolutionary multiobjective optimization assisted by scalarization function approximation for high-dimensional expensive problems
This paper presents a novel surrogate-assisted evolutionary algorithm based on scalarization function approximation, which is designed to strengthen its robustness against this deterioration. The proposed algorithm, called SFA/DE, constructs an approximation model for each scalarization function defined in a decomposition-based framework. Each decomposed problem is then solved using multiple independent models trained for its neighbor problems.
Yuma Horaguchi
,
Kei Nishihara
,
Masaya Nakata
BibTeX
Code
DOI
Link
BibTeX
×